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1. Preface

Many years have passed since the publication of the second edition of Geometric Tomography
and much has happened. One major event was the appearance in 2014 of the second edition of
Schneider’s classic text [227], which for some time lessened the pressure to post an update to
my own book. But such has been the pace of advances in convex geometry and related areas
that in 2020, when the first version of this update was posted, it finally became necessary to
take action.

To keep the task manageable, the update is limited, at least for now, to a list of corrections
and a set of reports on the problems stated at the end of the chapters. The idea is to post
new versions of this manuscript, each numbered and dated, and widen the scope as time and
energy allow, for example by adding reports on other open problems in geometric tomography.

A brief overview of progress on the problems can be found at the beginning of Section 4.
There are many, particularly from Chapters 1, 2, 5, and 6, for which there is little or nothing
to say. In fact, the problems vary widely in perceived importance. At one extreme stand the
slicing problem, Problem 8.3—solved in 2024, after a truly remarkable series of advances—
and Mahler’s conjecture, Problem 9.2, whose significance and notoriety, not just in convex
geometry but in mathematics as a whole, continue to increase steadily. At the other, there
are problems that arose in the course of writing the first edition of the book and seemed
potentially accessible to undergraduate and Masters students. These were motivated by the
study of X-rays of convex and star bodies, a topic that although not the focus nowadays of
much attention, does lend itself to natural problems, some of which may well await beautiful
solutions. For example, Problem 2.1 is still untouched, despite appearing as Question 1 in my
1995 AMS Notices article on geometric tomography.

The two problems singled out above, the slicing problem and Mahler’s conjecture, present
by far the greatest challenge in adequately summarizing their status. This is due to the
invasion of methods, results, and conjectures from other areas of geometry, such as contact
geometry and symplectic geometry, and from reaches of analysis beyond those encountered in
the book. Hundreds of pages have already been devoted to them in expository works, several
of which are masterly and go into far more depth than the short reports presented here.
Nevertheless, there does not appear to be any single source in the literature that provides a
comprehensive overview of either problem. Figure 1 on page 13 raises questions which, while
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obvious, have not appeared in the literature. For example, is KLS equivalent to its centered
(i.e., origin-symmetric) version, thereby eliminating the need for the two dotted arrows? Are
there any other relations between the 40 conjectures in the diagram? In particular, is it true
that SISO2⇒ MAH2, a relation that would connect the graph?

Rolf Schneider’s eagle eye spotted a number of typos and this help is much appreciated. I am
also very grateful to the following for helpful correspondence related to the specified aspects
of this update: Juan Carlos Álvarez Paiva (Problem 9.2), Florent Balacheff (Problem 9.2),
Paolo Dulio (Problems 1.5 and 5.6), Apostolos Giannopoulos (Problem 8.3), David Jerison
(Problem 8.3), Roman Karasev (Problem 9.2), Bo’az Klartag (Problems 8.3 and 9.2), Alex
Koldobsky (Problems 7.6 and 8.3), Emanuel Milman (Problems 8.3 and 9.3 to 9.5), Luis Mon-
tejano (Problems 3.3 and 7.4), Boris Rubin (Problem 8.5), Dmitry Ryabogin (Problems 3.1,
3.2, 7.2, and 7.3), Grzegorz Sójka (correction for p. 52), Yanir Rubinstein (Problems 8.3
and 9.2), Gaoyong Zhang (Problems 4.4, 8.3, 8.6, 8.7, 9.2, and 9.3), and Artem Zvavitch
(Problem 9.2).

Any further mistakes or misprints, as well as news about the open problems, can be
sent to Richard.Gardner@wwu.edu. A current version of this document will be kept at
http://faculty.wwu.edu/gardner/ (click on Research).

2. Remarks on terminology, notation, and names

In preparing the second edition, I felt some obligation to purchasers and readers of the first
edition not to make too many changes in basic terminology and notation. However, even then
my taste had moved with the times, and since its appearance in 2014, the second edition of
Rolf Schneider’s classic text also has to be taken into account. Regarding notation, nowadays
I prefer:

1. Rn rather than En for n-dimensional Euclidean space.
2. Bn exclusively (and not B) for the unit ball in Rn.
3. ∂E for the boundary of E instead of bdE.
4. Knn instead of Kn0 for the class of convex bodies in Rn.
5. Hn rather than λn for n-dimensional Lebesgue or Hausdorff measure, and V or Vn when

the set in question is a body.
6. K◦ instead of K∗ for the polar body of K, though the latter is consistent with the

notation for the dual space in functional analysis.

In terminology, I now favor:

1. o-symmetric or origin symmetric rather than centered (see p. 3 of the book). Unfor-
tunately, “centered” is sometimes used to mean having centroid at the origin. (The term
centrally symmetric seems increasingly to be abused; its meaning is clear and is not the same
as origin symmetric.)

2. dilation instead of dilatation (see p. 5 of the book), as almost everyone else does, even
though technically the latter is correct.

Despite these current preferences, notation and terminology in what follows will generally
adhere to that in the book, and the meaning of symbols and terms can be found there.
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A word about names. Several family names, such as Milman and Zhang, are shared by
more than one individual in the community. Nevertheless, only the last name is given when
citing an author in the text, since the initials are available in the bibliography.

3. Corrections and amendments

Page Line Comments
52 1–2 It has come to my attention that “all points in V are isolated”

does not contradict Lemma 1.2.26, as claimed. Thus the proof of
Lemma 1.2.27, if the statement is true, is unfortunately incomplete.

54 -2 Replace “(a)” by “(b)”.
110 14 The proof of Theorem 3.2.7 should start as follows: We may assume

without loss of generality that the center of K is at the origin. Then
origin symmetry implies that hK(u) = hK(−u), and...

126 -12 Replace “constants a and b” by “a, b > 0”.
128 -15 Insert “‘and k = n− 1” after “odd”.
133 13 The small indent at the left should be removed.
133 -2 Replace “i = 1, j = 2” by “i = 1, j = k = 2, n = 3”.
134 2–9 The results of Howard and Hug were actually obtained under the

(formally) stronger assumption that the ith and jth projection func-
tions of K1 and K2 are proportional, in other words, Vi(K1|S) =
a Vi(K2|S), for all S ∈ G(n, i), and Vj(K1|T ) = b Vj(K2|T ), for all
T ∈ G(n, j).

185 -12 The fact that the unit cube in En has property (VP) was proved
independently by Chakerian and Filliman [56] and attributed by
them to Michael Kallay.

204 6–7 Delete “, if i ≥ 0, and νk(E1) > νk(E2), if i < 0”.
205 13–15 Replace this sentence by “If i < 0, the same conclusion is reached

after noting that in this case sj(θ)
i ≤ rj(θ)

i, for j = 1, 2, and there
is an extra change of sign in the integrand.”

213 Fig. 5.9 The bold and dotted lines bounding the component C should be
interchanged. As it is, both C and p3C are in K \K ′.

226 20 Insert before the last sentence in the first paragraph of Note 5.1:
“When p = o and E is a bounded domain containing a ball with
center o, the directed chordal symmetral DpE of a set E at a point
p was first defined by Bandle and Marcus [27], who called it the
radial concentration of E and utilized it in the theory of capacities.
Their definition was actually more general, allowing the use of some
non-Euclidean metrics.”

341 22–23 Replace “Problems 8.6 and 8.7” by “Problem 8.6” and replace “the
hypotheses then imply” by “when n ≥ 3, the stronger hypothesis
IL = cL for some c > 0 implies”.



4 RICHARD J. GARDNER

Page Line Comments
345 19–24 The results quoted on these lines only pertain to the special case

of Theorem 8.2.13 when L is also a centered convex body. (For an
update on the slicing problem, see below.)

373 -7 It might be noted that the cases i = n−1 and i = 1 of Corollary 9.4.8
are consequences of the equality conditions in Theorem 9.3.1 (right-
hand inequality) and Theorem 9.3.2, respectively.

381 -8 Replace “case p = 1 was” by “cases p = 1 and p = 2 were”.
385 -12 Insert “, the centroid of M is at the origin,” after “λn(M) = 1”.
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4. Reports on the problems

Citations such as [153book] refer to the references in the book, and numbers associated to
pages, equations, theorems, or notes without reference to another work refer to those in the
book. A brief overview is as follows, where for problems not listed, any progress is detailed in
the full reports below.

Solved: Problems 8.3, 8.8, 8.9(i), 9.3.

Solved but with modified versions open: Problems 3.1, 3.2, 7.2, 7.3.

Solved in significant special cases: Problem 3.3 (for arbitrary n and k ≡ 1 (mod 4),
k 6= 133), Problem 3.9 (assuming that K1 and K2 have proportional ith and jth projection
functions, 1 ≤ i < j ≤ n − 2, (i, j) 6= (1, n − 2), and K2 enjoys a certain weak regularity
condition), Problem 7.4 (when L is a convex body containing o, n is arbitrary, and i ≡
1 (mod 4), i 6= 133), Problem 7.6 (when L1 and L2 are polytopes), Problems 8.6 and 8.7,
when i = n − 1 and “homothetic to” is replaced by “a dilatate of,” Problem 9.2 (in its
centered version, when n = 3), Problem 9.4 (when i = 1).
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Problem 1.1

The problem is also stated in [70]. One may as well take the two X-rays in the coordinate
directions. Vincze and Nagy [233] define a map Φ that takes a planar compact convex set K
to its generalized conic function fK(x), defined as the integrated taxicab distance of x to the
points in K. Up to a constant, the second partial derivatives of fK are the X-rays of K in the
coordinate directions. In [233, Theorem 5], it is shown that K is determined by its X-rays in
the coordinate directions if and only if the set-valued inverse of Φ is lower semi-continuous at
fK , and in [233, Remark 3] the authors speculate on how this condition might be utilized.

Problem 1.5

The problem remains unsolved, but there are results dealing with the case when ε = 0.
Dulio, Longinetti, Peri, and Venturi [71, Theorem 1.1] prove that if K,L ∈ K2

0 and XuiK =
XuiL for i = 1, . . . ,m, m ≥ 3, then

λ2(K4L) ≤ 1− cos(π/m)

cos(π/m)
λ2(K ∩ L),

with equality if and only if, up to a nonsingular affine transformation, K and L are regular
m-gons, K is a rotation of L about o by π/m, and {u1, . . . , um} are the corresponding equally
spaced directions. Some refinements and variations are also given in [71], including estimates
in terms of cross ratios, when m ≥ 4, as well as when the directions are only known up to a
fixed error.

Problem 2.2

The problem is also stated in [70].

Problem 2.8

The problem in the form stated is still open. However, it is not true that if S is a finite set of
directions in E2 such that planar convex bodies are determined by their X-rays in the directions
in S, then planar convex bodies are also determined among measurable sets by their X-rays
in the directions in S. Indeed, let S = {(1, 0), (0, 1), (2, 1), (−1, 2)}. It was proved by Gardner
and Gritzmann [267book, Theorem 6.2(i)] that planar convex bodies are determined by their
X-rays in the directions in S. We claim that if K = conv {(2, 4), (−2,−4), (4,−2), (−4, 2)},
a parallelogram, then there are an r > 1 and a measurable set E in E2 essentially different
from rK such that rK and E have the same X-rays in the directions in S. To see this, we use
an S-switching component discovered by Gritzmann, Langfeld, and Wiegelmann [98]. In [98,
Fig. 1, p. 1594], two finite lattice sets are depicted. Denoting the left set by A and the right
set by B, we see that A consists of the integer lattice points contained in the parallelogram
K. If F = A \B and G = B \A, then |F | = |G| = 8 and F ∪G is an S-switching component.
Moreover, F ⊂ bdK and G ⊂ E2 \ K. Since G is finite, we may choose r > 1 such that
G ⊂ E2 \rK and of course F ⊂ int rK. Now let ε > 0 be small enough that F +εB2 ⊂ int rK
and G + εB2 ⊂ E2 \ rK. Setting E = (rK \ (F + εB2)) ∪ (G + εB2), it is clear that E is a
measurable set with the same X-rays as rK in the directions in S.
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Problem 3.1

Note the restriction 2 < k < n− 1, which eliminates E3 as a setting for this problem. The
reason is that the Petty–McKinney example in Theorem 3.1.8 already gives a negative answer
when the projections are 2-dimensional. In any case, the examples constructed by Zhang
[238, Theorem 1.4] answer this problem negatively, even when the dilatation factor for each
projection is one. See the report for Problem 3.2 for more details.

It seems that the following modified version of Problem 3.1, inspired by [238, Remark 4.2],
is open.

Suppose that 2 < k ≤ n− 1, and that K1 and K2 are convex bodies in En such that K1|S is
similar to K2|S for all S ∈ G(n, k). Is K1 equal to K2 up to a dilatation, a translation, and
a reflection in a proper subspace?

Problem 3.2

Zhang [238, Theorem 1.4] solves this problem negatively. However, the bodies he constructs
are reflections of each other in a nontrivial proper subspace.

The following positive partial results have been obtained.
Myroshnychenko and Ryabogin [190] show that the answer is affirmative if one of the bodies

is a polytope.
Ryabogin [217] proves that if f, g ∈ C(Sn−1), n ≥ 3, and for each S ∈ G(n, 2), there is a

rotation φS in S about o such that f(φSu) = g(u) for each u ∈ Sn−1 ∩ S, then f(u) = g(±u)
for each u ∈ Sn−1. As a corollary, he concludes that if K|S is a rotation in S about o of L|S
for each S ∈ G(n, 2), then K = ±L. The case n = 3 of the latter result was also obtained by
Mackey [170].

Extra conditions can be placed on K and L that ensure that the desired conclusion, or a
slightly modified version of it, is true. These conditions stipulate the existence of diameters or
forbid symmetries in the projections. The details are rather involved, so we refer the reader
to Ryabogin [218], Alfonseca, Cordier, and Ryabogin [7], and the references given in these
papers.

The following modified versions of Problem 3.2 remain open. The first was posed by Ryabo-
gin (private communication) and the second is taken from [238, Remark 4.2].

Suppose that K1 and K2 are convex bodies in E3 such that K1|S is directly congruent to
K2|S, for all S ∈ G(3, 2). Is K1 a translate of ±K2?

Here, directly congruent means equal up to a direct rigid motion.

Suppose that 2 < k ≤ n − 1, and that K1 and K2 are convex bodies in En such that K1|S
is congruent to K2|S for all S ∈ G(n, k). Are K1 and K2 equal, up to a translation and a
reflection in proper subspace?

Ryabogin [219] surveys Problem 3.2 and poses other questions of a similar nature; answers
to some of these have been found by Myroshnychenko, Ryabogin, and Saroglou [191] and
Zhang [238, p. 2065].
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Problem 3.3

Montejano [188] supplies an affirmative answer when n is arbitrary and k ≡ 1 (mod 4),
k 6= 133. This leaves open the cases when n is arbitrary and k = 133 or k ≡ 3 (mod 4). In
his proof, Montejano uses some of the results in [46], which solved the corresponding cases of
Problem 7.4, the question for sections dual to Problem 3.3.

Montejano [189] provides a detailed commentary on [188] and also obtains an affirmative
answer when k = n − 2 is odd, under the stronger assumption that all the projections of K
are linearly equivalent; see [189, Theorem 5.8].

See the report for Problem 7.4 for further comments.

Problem 3.9

Howard and Hug [401book], [402book] obtained partial solutions to Problem 3.9 under the
(formally) stronger assumption that

Vi(K1|S) = a Vi(K2|S), ∀S ∈ G(n, i)

and

Vj(K1|T ) = b Vj(K2|T ), ∀T ∈ G(n, j),

in other words, the ith and jth projection functions of K1 and K2 are proportional. (It is
stronger by Kubota’s integral recursion (A.46), p. 408.) See p. 134 and the corrections listed
above in this update. For convenience, if not historical accuracy, we shall refer to the special
case when K2 = Bn of this modified version of Problem 3.9 as Nakajima’s problem. This
includes the question as to whether a convex body of constant width and constant brightness
must be a ball. Building on earlier work, Hug [113] obtains an affirmative answer to the same
modified version of Problem 3.9, when 1 ≤ i < j ≤ n− 2, (i, j) 6= (1, n− 2), and K2 enjoys a
certain weak regularity condition (satisfied, for example, when bdK2 contains a small region
in which it is C2

+). It follows that Nakajima’s problem has an affirmative answer for these
values of i and j, but remains open for arbitrary K1 when (i, j) = (1, n − 2) and n ≥ 6, and
when 1 ≤ i ≤ n− 2, j = n− 1, and n ≥ 4. More is known when K1 ∈ C2 but there has been
no progress beyond what is already stated in Note 3.6.

Problem 4.4

Saroglou and Zvavitch [226] show that if n ≥ 3 and there is a φ ∈ GL(n) such that the
curvature function fφK exists and is sufficiently close to 1 (i.e, ‖fφK−1‖∞ ≤ ε for some ε > 0),
then ΠmK → Bn as m→∞ in the Banach–Mazur metric. From this they are able to conclude
that if K satisfies these conditions and Π2K is homothetic to K, then K is an ellipsoid. The
latter result was obtained independently by Ivaki [119] with an extra smoothness assumption
on K.

It is already mentioned in Note 4.6 that when i = 1, Schneider [732book] proves that K
must be a ball. Ivaki [118] addresses Problem 4.4 for the case when 1 < i < n− 1 and shows
that with the same assumptions on K as in [119], if Π2

iK is homothetic to K, then K is a
ball.
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Ivaki’s results mentioned above are generalized to sufficiently regular even Minkowski val-
uations by Ortega-Moreno and Schuster [198].

Though they do not bear directly on Problem 4.4, related results of Saraglou [225] are
worth mentioning. He proves that if K ∈ K3

0, then Π2K ⊂ 8λ3(K)K if K is a zonoid and
6λ3(K)K ⊂ Π2K if K is centrally symmetric, both inclusions being sharp.

Problem 5.6

The problem as stated is completely open, but Dulio, Longinetti, Peri, and Venturi [71,
Section 6] apply their results on Problem 1.5, together with Theorem 6.2.8, to obtain stability
estimates for planar convex bodies with equal −1-chord functions at finitely many points.

Problem 7.2

This is the dual version of Problem 3.1. The examples constructed by Zhang [238, Theo-
rem 1.4] provide a negative answer. See the reports for Problems 3.1, 3.2, and 7.3 for more
details.

Problem 7.3

This is the dual version of Problem 3.2. All the results, both positive and negative, reported
for Problem 3.2 have corresponding versions for Problem 7.3 and are stated in the articles
referred to for Problem 3.2. Suitably modified versions of Problem 7.3 may also be posed, in
analogy to those for Problem 3.2; of course, translation is not permitted in this case.

Problem 7.4

This is the dual version of Problem 3.3. For convex L containing o, the problem is attributed
to Banach [26] (see p. 244 of the French original or p. 152 of the English translation), where,
of course, it is phrased in the language of Banach spaces.

Bor, Hernández Lamoneda, Jiménez-Desantiago, and Montejano [46] achieve a remarkable
breakthrough by proving the following result.

Problem 7.4 has an affirmative answer when L is a convex body containing o, n is arbitrary,
and i ≡ 1 (mod 4), i 6= 133.

In this setting (when L is convex containing o), this leaves open the cases when i = n − 1
and i = 133 or i ≡ 3 (mod 4). Apparently the reason for the exclusion of i = 133 stems from
the fact that 133 is the dimension of the exceptional Lie group E7; see [46, Theorem 1.6]. The
authors of [46] use the following new result in their proof.

If K ∈ Kn0 , n ≥ 3, is centered and such that all its sections by hyperplanes are linearly
equivalent affine images of bodies of revolution in their respective hyperplanes, then K is an
ellipsoid.

In a long survey article with some new results and several proofs, Montejano [189] gives a
detailed commentary on [46] and [188], and revisits and reworks Gromov’s result and ideas in
[359book] (see Note 7.2).

As far as I know, this problem is still completely open when L is a non-convex star body
in En.
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Problem 7.6

Howard, Nazarov, Ryabogin, and Zvavitch [111] answer the question affirmatively for star
bodies of revolution in E3 with C1 radial functions. For the more general problem in En,
Yaskin [237] obtains an affirmative answer when L1 and L2 are convex polytopes.

Ryabogin and Yaskin [220, Theorem 2.4] show that the assumption that L1 and L2 are
centered is necessary. Their result is as follows.

There are noncongruent convex bodies L1 and L2 in En, containing the origin in their
interiors, such that for 1 ≤ i ≤ k ≤ n− 1, we have

Vi(L1 ∩ S) = Vi(L2 ∩ S),

for all S ∈ G(n, k). Moreover, L1 and L2 can be constructed in such a way that both are C∞+
bodies of revolution or both are polytopes.

Note that the same result with Vi replaced by Ṽi is implied by Theorems 7.2.13 and 7.2.14.
The problem as stated, in all its versions, is still open.
Related to Problem 7.6 is the following Busemann-Petty problem for surface areas.

Let K1 and K2 be centered convex bodies in En such that

λn−2((bdK1) ∩ u⊥) ≤ λn−2((bdK2) ∩ u⊥),

for all u ∈ Sn−1. Is it true that λn−1(bdK1) ≤ λn−1(bdK2)?

The question was posed by König and Koldobsky [160], who showed that the answer is
negative ifK1 is a unit cube andK2 is a ball of suitable radius, provided n ≥ 14. Brazitikos and
Liakopoulos [51] consider the isomorphic version of this question, i.e., whether the hypotheses
imply that λn−1(bdK1) ≤ Cλn−1(bdK2) for a universal constant C, along with versions of
the slicing problem for surface area.

Problem 8.2

Rubin [215] shows that the answer is affirmative when the body with smaller sections is
invariant under rotations preserving a pair of mutually orthogonal subspaces of dimensions k
and n − k, 1 ≤ k ≤ n − 1 (the case k = 1 corresponding to a body of revolution), satisfying
i ≤ min{k, n− k}. The problem remains open.

Problem 8.3

As was mentioned in Notes 8.9 and 9.8, Problem 8.3 is equivalent to the the slicing problem,
posed by Bourgain in 1986. In 2024, following an advance due to Guan [100], Klartag and
Lehec [143] announced a solution. This was the culmination of decades of amazing contribu-
tions and advances in understanding its relation to other problems. Schneider [227, pp. 605–6]
presents a very brief summary of developments prior to 2014. In this report, we attempt to
survey the history of the problem, its relation to other conjectures, and the story of its final
solution. We shall refer both to the slicing problem and the hyperplane conjecture that the
answer to the problem is affirmative, as indeed it turned out to be. The term hyperplane
problem is also in use, but has the disadvantage of also applying to Banach’s question as to
whether every infinite-dimensional Banach space is isomorphic to its hyperplanes. It will be
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convenient to formulate several other related problems as conjectures, without implying that
anyone strongly believes them to be true.

Milman and Pajor’s paper [621book], already cited in Note 9.8, was the first comprehensive
study of the topic. In addition to the lecture notes of Giannopoulos [92], there are several other
recent expositions, ranging from the pithy and timely advertisement by Klartag and Werner
[148] to long chapters or whole books, by Alonso-Gutiérrez and Bastero [9], Artstein-Avidan,
Giannopoulos, and Milman [16, Chapter 10], Brazitikos, Giannopoulos, Valettas, and Vritsiou
[50], and Klartag and Milman [147]. It transpires that the slicing problem is related to several
other major open problems, and we draw on all these sources and others in an attempt to
describe succinctly the current state of the art. Figure 1 (compare [165, Fig. 2]) shows the
known relations between the various conjectures. We now know that all eight conjectures
on the lowest level, and several other equivalent ones besides, are true, but all the other
conjectures above this level are still open. In addition, at the top levels some basic questions
are unresolved, or have answers not yet published and fully understood only by a small group
of experts.

The slicing problem or hyperplane conjecture originated with the work of Bourgain [47],
motivated by harmonic analysis; see the remark after [47, Lemma 2], as well as [16, pp. 360–1],
[50, p. 141], and [147] for more details. In the context of centered convex bodies, some basic
information, including the equivalence of the hyperplane conjecture to the isotropic constant
conjecture (ISO) that LK ≤ C for any isotropic centered convex body in En and a universal
constant C (see (9.11), p. 385), is already set out in Note 9.8. However, both conjectures
have versions that are apparently more general but turn out to be equivalent. Paouris [200]
proved that we could also state the hyperplane conjecture without the symmetry assumption,
as follows.

Hyperplane conjecture (HYP). There is a universal constant C > 0 such that if K ∈ Kn0 and
λn(K) = 1, there is a hyperplane H such that λn−1(K ∩H) > C.

(Here, and in what follows, possibly different universal constants are all denoted by C.)
For ISO, we first need to extend some basic concepts. An arbitrary K ∈ Kn0 is isotropic if it
satisfies the conditions on p. 385 and in addition has its centroid at the origin. For isotropic
convex bodies, LK is defined as for centered bodies, and one observes that any K ∈ Kn0 has
an isotropic image φK under some φ ∈ GAn. Its isotropy constant LK can then be defined
as the isotropy constant of this affine image. Explicit formulas for LK , such as those in
[227, p. 605] or (9) below, are available. With this understanding, ISO is equivalent to the
statement that LK ≤ C for any convex body in En and a universal constant C. This follows
from Klartag’s observation in [131, Remark 2, p. 392] (see also [16, Proposition 10.2.15], [50,
Proposition 2.5.10], or [92, Proposition 8.9]) that there is a universal constant C such that for
any isotropic convex body K in En, there is a centered convex body K0 such that LK ≤ C LK0 .

In fact, ISO may also equivalently be formulated for log-concave measures. An account
of the intriguing interplay between convex bodies and log-concave measures can be found in
[227, Section 9.5] (see also [16, Section 10.2], [50, Section 2.5], or [92, Sections 7 and 8]). The
core result is that if f is a nonnegative log-concave function on En with f(o) > 0 and finite
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positive integral, and p > 0, then

(1) Kp(f) = {x ∈ En : p

∫ ∞
0

f(rx) rp−1 dr ≥ f(0)}

defines a convex body in En. See, for example, [50, Proposition 2.5.5] or [284book, Corol-
lary 4.2]; this is due to Ball, who stated it in [23, p. 74], [20book] for even f and p ≥ 1. More-
over, K is centered if f is even, and if K is a convex body with o ∈ intK, then Kp(1K) = K.
In fact, Klartag’s observation [131, Remark 2, p. 392], [50, Proposition 2.5.10] mentioned
in the previous paragraph uses this construction, since one can take K0 = Kn+2(f), where
f = gK is the covariogram of K defined on p. 377, which is easily shown to be log-concave
by the Brunn–Minkowski inequality, and satisfies gK(o) = λn(K) > 0. See also [175], where
Mart́ın-Goñi finds for each n the optimal constant dn such that LK ≤ dnLKn+2(gK).

Here we take a log-concave measure to be a probability measure in En with a log-concave
density function f . Such a measure µ is called isotropic if it has its centroid at the origin and

(2)

∫
En

(u · x)2 dµ(x) = 1

for all u ∈ Sn−1, and its isotropic constant is defined by

Lµ = sup
x∈En

f(x)1/n.

Then ISO, and therefore HYP, can be reinterpreted as asking whether there is a universal
constant C such that Lµ ≤ C for all such µ. This is because an extension of a result of Ball
[20book] in [16, Proposition 10.2.16], [50, Proposition 2.5.12] or [92, Proposition 8.10] shows
that if µ is an isotropic log-concave measure in En with density f , then there are universal
constants c1, c2 > 0 such that

c1Lµ ≤ LKn+1(f) ≤ c2Lµ,

where Kn+1(f) is the convex body defined by (1) with p = n+ 1.
To summarize, in all their versions, we have

HYP⇔ ISO.

(A proof of this equivalence is also given in [50, Theorem 3.1.2 and pp. 107–8], with the help
of several results from [50, Section 2.2].)

Functional versions of ISO have been considered and are extensively studied by Fradelizi
and Maŕın Sola [81]. If f is a nonnegative integrable log-concave function on En with nonzero
integral, one can define its isotropic constant by

(3) Lf =

(
maxx∈En f(x)∫

En f(x) dx

)1/n

(det Cov(f))1/2n ,

where Cov(f) is the covariance matrix of f . (When f is the density function of an isotropic
log-concave measure, Lf equals the isotropic constant Lµ of µ defined above.) For reasons
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explained below after the introduction of the sharp isotropic constant conjectures, a preference
is expressed in [81] for a different definition, namely

(4) L̂f =

(
e−h(f)∫

En f(x) dx

)1/n

(det Cov(f))1/2n ,

where h is the differential entropy of f , i.e.,

(5) h(X) = −
(∫

En

f(x) log f(x) dx

)
/

∫
En

f(x) dx.

Each definition of the isotropic constant of f gives rise to a functional version of ISO, namely
that it is bounded above by a universal constant. It follows from [81, Remark 3.1] that each
is equivalent to HYP.

Henceforth we shall give preference to HYP in stating its consequences, even when they
follow more immediately from ISO.

The discussion in Note 9.8 mentions a couple of other statements equivalent or related to
HYP, for example one due to Klartag and Milman [443book] involving Steiner symmetrization,
to which should be added a result in a note of Ball [24]. Others still were already known
to Milman and Pajor [621book]. In addition to some of these discussed below, there is a
connection to the following stronger form of Milman’s reverse Brunn–Minkowski inequality
(see [16, Theorem 8.4.3] and [227, p. 380]).

Reverse Brunn–Minkowski inequality conjecture (RBM). There is a universal constant C > 0
such that if K,L ∈ Kn0 are isotropic, then

λn(K + L)1/n ≤ C
(
λn(K)1/n + λn(L)1/n

)
.

In [621book, pp. 78–9] (see also [50, p. 111]), it is shown that HYP ⇒ RBM and credit is
given to Ball for first proving this. (The reference in [621book] to Ball’s 1986 PhD thesis does
not appear to be correct.) Bourgain, Klartag, and Milman [48, Proposition 1.4] (see also [50,
Theorem 3.2.4]) prove the reverse implication, so in fact

HYP⇔ RBM.

Another statement from Milman and Pajor [621book] is phrased in the following slightly
different form in [147].

Ellipsoid intersection conjecture (ELL). There is a universal constant C such that if K ∈ Kn0 ,
there is an ellipsoid E ⊂ En with λn(E) = λn(K) such that

λn(K ∩ C E) ≥ λn(K)/2.

In [621book, Proposition 5.5], it is proved that

HYP⇔ ELL.
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Figure 1. Relations between conjectures around the slicing problem or hyper-
plane conjecture (Problem 8.3) and Mahler’s conjecture (Problem 9.2). Dotted
arrows indicate that only a symmetric version of KLS is known to follow. All
the conjectures on the lowest level are true.
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Several more equivalent forms of HYP are known, set in the labyrinthine theory expounded
in [16, Chapter 10] and [50], and surveyed in [147]. The following one was proposed by Dafnis
and Paouris [66].

Negative moment conjecture (NMOM). There are universal constants C, ξ > 0 such that if
K ∈ Kn0 is isotropic, then

max{p ≥ 1 : M2(K) ≤ ξM−p(K)} ≥ C n,

where

Mp(K) =

(∫
K

‖x‖p dx
)1/p

.

Note that NMOM can be formulated in terms of dual volumes of K, since using (A.63), p. 412,
we obtain

Mp(K)p =
n

n+ p
Ṽn+p(K).

By [66, Theorem 6.5] (see also [50, Theorems 6.4.2 and 6.4.3]), we have

HYP⇔ NMOM.

Two further equivalent statements come from information theory. If X is a random vector
in En with probability density function f , its differential entropy h(X) = h(f) is defined by
(5). The notation Ent(X) is also often used.

Relative entropy conjecture (RELE). There is a universal constant C > 0 such that if X is a
random vector in En whose probability density function f is log-concave, then

(6) D(X) = D(f) = h(G)− h(X) ≤ C n,

where G is a Gaussian random vector with the same covariance matrix as X.

Bobkov and Madiman [42] prove that

HYP⇔ RELE,

giving credit on [44, p. 3320] to Ball for the idea of such an equivalence. See also [43, Conjec-
tures V.4 and V.5] for this and a further conjecture equivalent to RELE, and [45] for related
results. Madiman, Nayar, and Tkocz [171, Section 3] note that the extremal functions f for
(6) differ from those for ISO.

The entropy power of a random variable X is defined by N(X) = (2πe)−1e2h(X)/n. The
famous entropy power inequality of Shannon (see [264book, (55), p. 384]) states that if X and
Y are independent random vectors in En with probability densities in Lp(En) for some p > 1,
then

(7) N(X + Y ) ≥ N(X) +N(Y ).

Reverse entropy power inequality conjecture (REVE). There is a universal constant C > 0 such
that if X1, . . . , Xk are i.i.d. random vectors in En whose probability density function is the
density of an isotropic log-concave measure, then

N(X1 + · · ·+Xk) ≤ C (N(X1) + · · ·+N(Xk)) = CkN(X1).
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Marsiglietti and Kostina [174, Theorem 1] (compare [42, Theorem 3]) prove that REVE⇔
RELE and hence

HYP⇔ REVE.

Further versions of HYP continue to appear due to the fundamental significance of the
isotropic constant. For example, Fresen [86] finds a reformulation in terms of the convex
floating body, and Alonso-Gutiérrez and Brazitikos [12, Theorem 1.1] provide an equivalent
statement in terms of the optimal constant a(K), where K ∈ Kn0 is centered, for which there is
an orthonormal basis {u1, . . . , un} of En such that the reverse dual Loomis–Whitney inequality

λn(K)n−1 ≤ a(K)
n∏
j=1

λn−1(K ∩ u⊥j )

holds (compare Meyer’s inequality in Note 9.7). Berndtsson, Mastrantonis, and Rubinstein
[34] show that HYP would follow from their lower bounds for the Lp-Mahler volume (defined in
the report below for Problem 9.2), if a certain convexity condition holds (the Ricci curvature
of Bergman metrics of tube domains over a convex body has an upper bound independent of
n). We mention in passing articles by Brazitikos and Liakopoulos [51] and Liakopoulos [168],
where versions of HYP for the surface area and other quermassintegrals of central sections of
convex bodies are considered.

Bourgain’s LK ≤ Cn1/4 log n bound for centered bodies K, mentioned in [88book, Note 8.9],
is presented in [16, Theorem 10.3.3], [50, Section 3.3 and p. 135], and [92, Sections 2.4 and 2.5].
It was improved to LK ≤ Cn1/4 by Klartag [132], and this holds even for general bodies (again
by [131, Remark 2, p. 392] or [200], see also [16, Theorem 10.5.4]). This was generalized
and given an alternative proof by Klartag and Milman [146, Theorem 1.1] (see also [50,
Theorems 7.3.2 and 7.5.15]). After Ball (see [25]) noticed that the Kannan–Lovász–Simonovits
conjecture conjecture KLS ⇒ HYP and Eldan and Klartag [75] proved that the thin shell
conjecture THIN ⇒ HYP (see below), these two still open conjectures became avenues for
further analytical attacks on HYP. In particular, Eldan’s technique of stochastic localization
from [73] (see also [74] and the discussion below about progress on KLS) was employed by Lee
and Vempala [164] to retrieve Klartag’s bound via one for KLS. Chen [61] also used stochastic
localization in his spectacular work on KLS (see the paragraph below on evidence for KLS and
THIN). This led to the bound LK ≤ Cno(1), asymptotically better than any positive power of
n. Subsequent work follows the same approach. A further significant improvement was made
by Klartag and Lehec [142], who proved that LK ≤ C(log n)4. The exponent was slightly
lowered by Jambulapati, Lee, and Vempala [121], but soon after, another sizeable step, due
again to Klartag [138], gave LK ≤ C

√
log n. Guan’s remarkable paper [100] improved this to

LK ≤ C log log n. Much of it is devoted to proving [100, Lemma 2.1], a bound that allowed
Klartag and Lehec [143] to deliver the death blow: HYP is true!

Needless to say, the proof of HYP is difficult. Guan’s proof of [100, Lemma 2.1] alone is quite
long and intricate. Klartag and Lehec [143] also employ Klartag’s improved Lichnerowicz
inequality mentioned just before (27) below; Milman’s theory of M -ellipsoids (specifically,
[50, (1.13.3), p. 57]); and stability results for the entropy power inequality (7) obtained by
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Eldan and Mikulincer. Bizeul [36] finds an alternative to the approach of Klartag and Lehec,
achieving this by proving a near-optimal small-ball estimate for isotropic random vectors X
in En, i.e., an upper bound for the probability that X concentrates around a point. His
proof still uses stochastic localization and Guan’s lemma [100, Lemma 2.1], however. Further
simplifications will no doubt appear, but for now, we refer the reader seeking more details to
online talks by Chen [197, January 5, 2021], Klartag [197, January 14, 2025] and Bizeul [197,
January 28, 2025], notes by Klartag on Chen’s work [137] and on Guan’s [139], and a survey
by Klartag and Lehec [144].

For the historical record, HYP was verified for various classes of convex bodies (meaning
that for each class, LK is bounded by a universal constant for each member K of the class),
listed with references in [92, p. 65] and [153, p. 566], and often treated in [50], to which
we shall refer when possible for details and further citations. As well as projection bodies
(see also [50, Section 4.2.3]) and intersection bodies (and therefore polar projection bodies),
already mentioned in Note 9.8, HYP is known to be true for unit balls of subspaces of Lp, for
a fixed 0 ≤ p <∞ [23book], [617book]; unit balls of subspaces of quotients of Lp, 1 < p ≤ ∞
[411book], [617book]; unconditional convex bodies [50, Section 4.1] and centered convex bodies
within a given Banach–Mazur distance of them [50, Corollary 4.2.6(ii)]; centered convex bodies
with outer volume ratio bounded above by a fixed constant [50, Proposition 4.2.1]; unit balls
of 2-convex spaces with fixed constant [50, Section 4.2.2]; unit balls of the Schatten classes
[50, Section 4.3]; convex polytopes with no more than a given number of vertices or facets
[50, Section 4.4]; and k-intersection bodies [152]. Klartag and Kozma [141] (see also [50,
Section 11.4]) verified the conjectures for certain random polytopes; more specifically, they
proved that if K is the convex hull of m ≥ n independent standard Gaussian vectors in En,
then LK < C with probability at least 1−Ce−c n, where c and C are universal constants (also
not depending on m). This was followed by a series of related works, to which references can
be found in one of the most recent, that by Prochno, Thäle, and Turchi [205] (see also [50,
Sections 11.5 and 11.6]). In some cases, the classes of bodies mentioned in this paragraph also
satisfy certain of the potentially stronger conjectures in Figure 1 or represent positive partial
answers to the measure slicing problem, as described below.

Before turning to other conjectures stronger than HYP, we mention a discrete version of
HYP and also explain how HYP bears on some other well-known open questions. The discrete
version was posed by Koldobsky at an AIM meeting in 2013. It asks for the best constant
cn such that for every centered convex body in En with dim(K ∩ Zn) = n, there is an S ∈
G(n, n− 1) such that

|K ∩ Zn| ≤ cn|K ∩ Zn ∩ S|λn(K)1/n.

Currently the best estimate, due to Freyer and Henk [88], is cn ≤ C1n
10/3(log n)C2 , where C1

and C2 are universal constants. See also the discussion in [96, Section 8].
HYP has consequences for Hadwiger’s conjecture from combinatorial geometry posed in

1957, which states that at most 2n translates of the interior of a convex body K in En are
needed to cover K itself, the upper bound 2n only required if K is a parallelepiped. It also
appertains to Ehrhart’s volume conjecture from 1964, that if K is a convex body in En with
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centroid at o and such that Zn ∩ intK = {o}, then λn(K) ≤ (n + 1)n/n!, with equality if
K is the simplex K = (n + 1)conv {e1, . . . , en} − (1, 1, . . . , 1). Both conjectures have been
confirmed when n = 2 but are open for n ≥ 3. Until recently, the best known general bounds
for the two conjectures were(

2n

n

)
(n log n+ n log log n+ 5n) = O

(
4n
√
n log n

)
and 4n,

respectively. Huang, Slomka, Tkocz, and Vritsiou [112] improved these bounds by utilizing
thin-shell estimates for log concave measures from [101]. Campos, van Hintum, Morris, and
Tiba [55] follow their approach but instead use Klartag and Lehec’s bound for HYP from [142]
to do even better, obtaining the bound 4n exp(−Cn/(log n)8) for both conjectures. Since
HYP is true, we now have the current best bound of 4n exp(−Cn) instead. In fact, these
estimates have a third ingredient in common, which is to obtain a good lower bound for
λn(K ∩ (−K))/λn(K); the minimum is thought to be attained by a simplex, yielding a lower
bound of the order of (2/e)n, but this has not been proved.

Sharp isotropic constant conjectures. If K ∈ Kn0 , then LK ≤ L4n (SISO1), where 4n is
a regular simplex with centroid at the origin and unit volume. If K is also centered, then
LK ≤ LCn (SISO2), where Cn is a centered unit cube.

SISO2 is explicitly stated in [596book, p. 312], but Ball’s suggestion in [23, p. 85] (see also
[20book, p. 83]) is apparently its first appearance in print.

Computations show that

(8) L4n =
(n!)1/n

(n+ 1)(n+1)/(2n)
√
n+ 2

and LCn = 1/
√

12;

the former is shown in [180, p. 88], while the latter is easily checked. Since L4n is uniformly
bounded in n, we have

SISO1⇒ HYP and SISO2⇒ HYP.

Of course, one can also ask to identify the bodies that achieve equality in the conjectured
inequalities. Affirmative answers to SISO1 and SISO2 with the expected equality conditions
are available when n = 2, via those to related conjectures described below. Building on
work of Campi, Colesanti, and Gronchi [54], Meyer and Reisner [183] prove that for n ≥ 2,
any local maximizer of LK , for either SISO1 or SISO2, cannot be C2

+ at any point of ∂K,
while Rademacher [207, (2), p. 309] shows that if a maximizer of LK for SISO1 is a simplicial
polytope, then it must be a simplex.

Fradelizi and Maŕın Sola [81] propose the following functional versions of the sharp isotropic
constant conjectures. Let

f0(x) = exp(−Σn
i=1xi)1[−1,∞)(x), f1(x) = exp(−Σn

i=1|xi|), and f∞(x) = 1[−1,1]n(x).

They conjecture that if f is a nonnegative log-concave function on En with nonzero integral,

then Lf ≤ Lf0 = 1 and L̂f ≤ L̂f0 = e−1. Denote these statements by P (n) and P̂ (n),

respectively. They further conjecture that if f is also even, then Lf ≤ Lf1 = 1/
√

2 and
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L̂f ≤ L̂f∞ = 1/
√

12. Denote these statements by Q(n) and Q̂(n), respectively. All four
statements are true when n = 1; see the references provided in [81]. It is proved in [81] that if

P̂ (n+ 1) holds, then SISO1 holds in En, and conversely, if SISO1 holds in En+m for all m ∈ N,

then P̂ (n) holds. It is also shown that if Q̂(n) is true, then SISO2 holds in En, and conversely,

if SISO2 holds in En+m for all m ∈ N, then Q̂(n) is true.
In the context of convex bodies, all the above conjectures are inextricably linked with

moments of volumes of random convex polytopes contained in a convex body. To explain this,
for a bounded Borel set A in En, k ≥ n, and p > 0, define

hp,k(A) =

∫
A

· · ·
∫
A

λn(conv {x0, x1, . . . , xk})p dx0 · · · dxk

and, when A is centered,

jp,k(A) =

∫
A

· · ·
∫
A

λn(conv {±x1, . . . ,±xk})p dx1 · · · dxk.

These quantities often appear in normalized form or modified as a pth mean, and with different
notation. Their relevance stems from the formulas

(9) LK =

(
n!h2,n(K)

(n+ 1)λn(K)n+3

)1/2n

and LK =
1

2

(
n! j2,n(K)

λn(K)n+2

)1/2n

,

for K ∈ Kn0 and centered K ∈ Kn0 , respectively. These are stated by Meckes [180, p. 88],
[596book, p. 312], the latter providing references. For example, Ball [20book] utilizes j2,n(K).
From (9) and Stirling’s formula, we see that ISO, and hence HYP, is equivalent to hp,n(K)1/np ≤
C/
√
n or jp,n(K)1/np ≤ C/

√
n when λn(K) = 1 and p = 2, but Meckes [180, p. 88] observes

that this is true for any p ≥ 1.
Slightly adapting the terminology of Meckes [596book], we shall refer to the problem of

finding, for each n ≥ 2, k ≥ n, and p ≥ 1, those convex bodies (or centered convex bodies) K
for which hp,k(K) (or jp,k(K), respectively) achieve their extremal values, as the generalized
Sylvester problem. The case k = n = 2, p = 1 arose from a discussion in the Educational
Times of 1864–5 about the earlier version of Sylvester’s problem stated in Note 9.4. Pfiefer
[204] provides a historical account. It is known that the lower bounds are attained precisely
by ellipsoids; the corresponding inequality hp,k(K) ≥ hp,k(B

n), where λn(K) = κn, is the
Blaschke–Groemer inequality (see [227, Theorem 10.3.4]), and Meckes [180, Theorem 1(2)]
provides the corresponding inequality for jp,k(K).

Generalized Sylvester conjectures. If K ∈ Kn0 has unit volume, k ≥ n, and p ≥ 1, then
hp,k(K) ≤ hp,k(4n) (GSYLp,k1) and if K is also centered, then jp,k(K) ≤ jp,k(Cn) (GSYLp,k2).

The special case GSYL1,n1 has also been called the simplex conjecture. An interesting result
of Bárány and Buchta [28] in the same direction shows that for each K ∈ Kn0 with λn(K) = 1,
there is an N = N(K) ≥ n such that h1,k(K) ≤ h1,k(4n) for all k ≥ N .
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Again, it can be asked to find the bodies that achieve equality in the conjectured inequalities.
From (9), it is evident that

GSYL2,n1⇔ SISO1 and GSYL2,n2⇔ SISO2.

An affirmative answer to GSYLp,k1 in E2 was provided by Campi, Colesanti, and Gronchi
[54], generalizing earlier work of Blaschke (see [50, p. 135] and [227, pp. 540–1]) and Dalla
and Larman [68]. Saroglou [222] proves that when k = n = 2 and p ≥ 1, simplices are the
only maximizers, extending the result for p = 1 of Giannopoulos [91]. Campi, Colesanti,
and Gronchi [54] employ shadow systems, by means of which they also show that maximizers
cannot be too smooth; specifically, their boundaries cannot be of class C2

+ in a nonempty
relatively open subset (see also [50, Theorems 3.2 and 3.3]). Meckes [596book, Theorem 9]
adapts the tools developed in [54] to obtain analogous results for centered bodies, in particular
an affirmative answer to GSYLp,k2 in E2.

For a bounded Borel set A in En, k ≥ n, and p > 0, define

gp,k(A) =

∫
A

· · ·
∫
A

λn(conv {o, x1, . . . , xk})p dx1 · · · dxk.

Compare the set function gm,k defined on p. 353, which features in the Busemann random
simplex inequality, Theorem 9.2.6; here we are abusing notation, but g1 = g1,n is the same
in both cases. The lower bound for gp,k on convex bodies is attained precisely for centered
ellipsoids, by the Busemann–Groemer inequality [227, Theorem 10.3.5].

Busemann–Groemer functional conjectures. If K is a convex body of unit volume with centroid
at the origin in En, k ≥ n, and p ≥ 1, then gp,k(K) ≤ gp,k(4n) (BGFp,k1). If K is also centered,
then gp,k(K) ≤ gp,k(Cn) (BGFp,k2).

In [50, Proposition 3.5.2], it is shown that if p ≥ 1 and K ∈ Kn0 is centered and of volume
1, then

(10) gp,n(K) ≤ hp,n(K) ≤ (n+ 1)pgp,n(K).

The left-hand inequality in (10) yields the relation

GSYLp,n2⇒ BGFp,n2.

Moreover, [50, Corollary 3.5.8] uses (10) to conclude that if the simplex conjecture is true, the
hyperplane conjecture follows, i.e.,

GSYL1,n1⇒ HYP.

The previous implication and (10) are due to Giannopoulos and first appeared in his 1993
PhD thesis.

We shall continue to consider the Busemann–Groemer functional conjectures together with
the following related ones, in which ΓpK denotes the centroid body of K, defined in Note 9.5.

Lp-centroid body conjectures. If K is a convex body of unit volume with centroid at the
origin in En and p ≥ 1, then λn(ΓpK) ≤ λn(Γp4n) (LPCBp1). If K is also centered, then
λn(ΓpK) ≤ λn(ΓpCn) (LPCBp2).
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We adopt the usual custom of writing ΓK for Γ1K. A connection to the hyperplane con-
jecture is explicitly noted by Milman and Pajor [621book, Proposition 5.4], who show that
HYP is equivalent to proving that λn(ΓK)1/n ≤ C/

√
n when K is centered and λn(K) = 1

or to proving that λn(Γ2K) ≤ C when K is centered and λn(K) = 1. For p = 1, 2, it is
known that when λn(K) = 1, there are constants cp,n depending only on n and p such that
λn(ΓpK) = cp,n gp,n(K)1/p. (See [148book, p. 133]; for p = 1, this is due to Petty (see The-
orem 9.1.5 and Note 9.1), while the case p = 2 goes back to Blaschke; for p 6= 1, 2, such
formulas are apparently not available.) This leads to yet further statements equivalent to
HYP, involving g1,n(K) and g2,n(K). From these facts, it follows that for p = 1 or 2,

BGFp,n1⇔ LPCBp1⇒ HYP and BGFp,n2⇔ LPCBp2⇒ HYP.

It is expected that the upper bound in each set of conjectures is attained precisely for
simplices or parallelotopes, respectively. With this equality condition, LPCBp2 was proposed
for p = 1, 2 by Bisztriczky and Böröczky [67book, Conjectures 1.2 and 2.2], who proved both
cases, and hence BGFp,k2 for p = 1, 2, when n = 2. (This is already partially mentioned in
Note 9.4.) They also proposed a version of LPCBp1 for p = 1, 2, with the weaker restriction
o ∈ K, and proved that the corresponding inequalities hold when n = 2, with equality if and
only if K is a triangle with o as a vertex. As was mentioned in Note 9.5, Campi and Gronchi
[147book] extend these results by means of shadow systems; their results are more general,
but they include proofs of LPCBp1 and LPCBp2, for all p ≥ 1 when n = 2, and hence BGFp,n1
and BGFp,n2 for n = 2 and p = 1, 2, with equality conditions.

Problem 8.3 as stated is now often called the isomorphic Busemann–Petty problem and its
equivalence to HYP was explained in Note 9.8. Other variants of the Busemann–Petty problem
are not relevant to HYP and will not be discussed here, but some, leading to generalizations of
HYP, originate in the ideas of Zvavitch [872book] (see also [465book, Section 5.4]) to consider
the Busemann–Petty problem for arbitrary measures and of Koldobsky [149] to obtain stability
versions. For a brief description, we first note that the version of HYP in (9.10), p. 385 is
equivalent to asking if there is a universal constant C such that for 1 ≤ k ≤ n−1 and centered
K ∈ Kn0 , we have

λn(K)(n−k)/n ≤ Ck max
S∈G(n,n−k)

λn−k(K ∩ S).

Indeed, the previous inequality results from iterating (9.10), p. 385, which is the case k = 1.
In [151, Problem 1], Koldobsky asks if there is a universal constant C such that for any
1 ≤ k ≤ n − 1, any centered K ∈ Kn0 , and any even measure µ in En with nonnegative
continuous density function f , we have

(11) µ(K) ≤ Ck max
S∈G(n,n−k)

µS(K ∩ S)λn(K)k/n,

where µS is the measure in S with density f with respect to λn−k. One might call this the
measure slicing problem. By taking f ≡ 1, we see that an affirmative answer would also
dispose of HYP. Koldobsky [150] shows that (11) holds with a factor nk/2 on the right-hand
side. (Chasapis, Giannopoulos, and Liakopoulos [58] demonstrate that this remains true for
arbitrary K ∈ Kn0 with o ∈ intK when f is only assumed to be nonnegative and locally
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integrable.) Koldobsky [151] proves that for each α ∈ (0, 1), there is a C = C(α) such
that (11) is true whenever k ≥ αn. Extending a result of Milman [617book, Corollary 5.4],
Koldobsky [151, Corollary 1] also obtains (11) with K replaced by a centered star body L
and with a factor dovr(L,BPnk) on the right-hand side. The latter quantity is an outer volume
ratio distance, defined for a star body L and class E of star bodies in En by

dovr(L, E) = inf

{(
λn(M)

λn(L)

)1/n

: L ⊂M, M ∈ E

}
,

and BPnk is the class of (k, n−k)-intersection bodies in En, defined in Note 8.7 on p. 341, where
it was noted that BPn1 = In. In a survey, Koldobsky [153, p. 567] lists many other positive
results concerning the measure slicing problem. However, it turns out that (11) is generally
false, since Klartag and Livshyts [145], improving on an earlier construction of Klartag and
Koldobsky [140], find an example showing that up to a universal constant, a factor

√
n must

be inserted on the right-hand side of (11) for the inequality to hold generally when k = 1.
Further results on the measure slicing problem may be found in [40], [156], and [236].

Despite the falsity of (11), the following conjecture, proposed as a problem in [157, p. 262],
is open, where we use notation from the previous paragraph.

Isomorphic Busemann–Petty conjecture for measures (IBPM). Let K and L be centered convex
bodies in En and let µ be an even measure in En with a nonnegative continuous density function
f . There is a universal constant C such that if µu

⊥
(K ∩ u⊥) ≤ µu

⊥
(L ∩ u⊥) for all u ∈ Sn−1,

then µ(K) ≤ Cµ(L).

Here µu
⊥

is the measure in u⊥ with density f with respect to λn−1. Taking f ≡ 1, and
bearing in mind the equivalence of the slicing and isomorphic Busemann–Petty problems, we
see that

IBPM⇒ HYP.

Koldobsky and Zvavitch [157, Theorem 1] prove that the hypothesis of IBPM yields the con-
clusion µ(K) ≤ dBM(K, In)µ(L), where dBM(K, In) is the Banach–Mazur distance from K
to the class In of intersection bodies in En, and from this, the fact that Bn ∈ In, and Theo-
rem 4.2.12 (John’s theorem), that the weaker conclusion µ(K) ≤

√
nµ(L) is valid. Unlike the

measure slicing problem, is not known whether
√
n is optimal, nor whether dBM(K, In) can

be replaced by dovr(K, In), which would give the desired conclusion for unconditional convex
bodies. Of course, a version of IBPM can be formulated for lower-dimensional sections, and
this is considered by Chasapis, Giannopoulos, and Liakopoulos [58] and Giannopoulos and
Koldobsky [93].

Thus we have seen that the measure slicing problem and IBPM may be fundamentally
different from each other, unlike their counterparts in the special case when µ = λn. However,
Koldobsky, Paouris, and Zvavitch [154] find a common approach by assuming that µS1 (K∩S) ≤
µS2 (L∩S), for all S ∈ G(n, n−k), where µ1 and µ2 are measures with possibly different density
functions f1 and f2, and seeking an upper bound for µ1(K) in terms of µ2(L). In this way, they
are able to generalize several results from [40], [140], [145], and [151]. One could of course state
stronger forms of IBPM involving two measures and/or lower-dimensional sections; we shall



CORRECTIONS AND UPDATE TO GEOMETRIC TOMOGRAPHY, SECOND EDITION 23

not do so here, but instead refer to Giannopoulos, Koldobsky, and Zvavitch [95] for the most
general results in this direction. Still further variations on the theme of Busemann-Petty-type
comparison theorems and slicing questions for functions are investigated by Giannopoulos,
Koldobsky, and Zvavitch [96], Haddad and Koldobsky [104], and Koldobsky, Roysdon, and
Zvavitch [155].

If L is a star body in En and S ∈ G(n, n − k), where 0 ≤ k ≤ n − 2, define the average
section functional as(L ∩ S) by

as(L ∩ S) =

∫
Sn−1∩S

λn−k−1(L ∩ S ∩ u⊥) du.

Note that as(L) = as(L ∩ En) corresponds to the case when k = 0. Also, up to a constant,
the average section functional is a dual volume, since

as(L ∩ S) = (n− k)κn−k−1Ṽn−k(L ∩ S),

as can be seen by using (A.58), p. 410 (with n replaced by n − k and n − k − 1) and Kub-
ota’s formula, Theorem A.2.7, and taking L = Bn to evaluate the constant. The following
conjectures were posed as a question by Brazitikos, Dann, Giannopoulos, and Koldobsky [49,
Question 1.1].

Average section functional conjectures (ASFk). If 1 ≤ k ≤ n− 2, there is a universal constant
C such that if K ∈ Kn0 is centered, then

(12) as(K) ≤ Ckλn(K)k/n max
S∈G(n,n−k)

as(K ∩ S).

In [49, Proposition 4.5], it is shown that

ASF1 ⇔ HYP.

From earlier work of Koldobsky cited in [49] it is known that (12) holds in the class of
intersection bodies. In [49, Theorem 1.3], it is proved that (12) is true, even for centered star
bodies, with an extra factor dovr(L,BPnk) on the right-hand side, yielding the conjecture for
other classes besides. The authors also prove in [49, Theorem 1.6] that (12) holds with an
extra factor LkK on the right-hand side, as well as several other related results.

A different strengthening of HYP is considered by Giannopoulos and Koldobsky [94, Ques-
tion 1.1].

Volume difference conjecture (VDIFF). There is a universal constant C such that if 1 ≤ k ≤
n− 1 and γk,n = min γ > 0 satisfies

λn(K)(n−k)/n − λn(L)(n−k)/n ≤ γk max
S∈G(n,n−k)

(λn−k(K ∩ S)− λn−k(L ∩ S)),

for all centered K,L ∈ Kn0 with L ⊂ K, then supn,k γn,k ≤ C.

Taking k = 1, L = rBn, and letting r → 0 yields inequality (9.10) on p. 385. In other
words,

VDIFF⇒ HYP.
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Along with several other related results, it is shown in [94, Corollary 1.3] that the previ-

ous inequality holds with an extra factor of (
√
n/k (log(e n/k))3/2)k on the right-hand side.

Extensions to arbitrary measures are discussed in [96, Section 7].
A remarkable result of Klartag [136] establishes a direct connection between Problems 8.3

and 9.2. In [136, Theorem 1.1], he proves that if a convex body K in En contains the origin
in its interior and is a local minimizer of the volume product v(K) = λn(K)λn(K∗), then

LKLK∗ v(K)1/n ≥ 1

n+ 2
.

Consequently, SISO1 and (8) imply that

1

(n+ 2)n
≤ LnKL

n
K∗ v(K) ≤ L2n

4n
v(K) =

(n!)2

(n+ 1)n+1(n+ 2)n
v(K)

and hence v(K) ≥ (n+ 1)n+1/(n!)2 = v(4n). Thus

SISO1⇒ MAH1,

the Mahler conjecture for bodies containing the origin in their interiors (see the report for
Problem 9.2). A shorter proof of this result has been offered by Balacheff, Solanes, and Tzanev
[21], and Fradelizi and Maŕın Sola [81] establish a functional version of it; see the report for
Problem 9.2 below.

We have seen that (11) is generally false, so despite Figure 1, it is not true that any
reasonably plausible conjecture stronger than HYP is open at the present time. Klartag [136,
Section 5] also offers a cautionary note by constructing unconditional convex bodies that form
counterexamples to [161, Conjecture 5.1]. The latter proposes that the maximum of

φ(K) =
1

v(K)

∫
K

∫
K∗

(x · y)2 dx dy,

over all centered convex bodies in En, where v(K) is the Mahler volume, is attained when K
is an ellipsoid. Alonso-Gutiérrez [8] (see also [50, p. 137], [161, p. 890], and [227, pp. 577–8])
showed that this would imply both HYP and the Blaschke–Santaló inequality for centered
convex bodies, Theorem 9.2.11, and moreover verified it for lnp balls.

The following conjecture is ascribed to Minkowski although apparently not published by
him. It has important consequences in number theory, such as [179, Conjecture 1.2], and is
known to be true when n ≤ 10; see [128], [228], and the references given there. Note that the
stronger Woods’ conjecture, also proved for n ≤ 10 in [128], is now known to be false when
n ≥ 24.

Minkowski’s conjecture (MINK). Let o ∈ Λ be an n-dimensional lattice in En whose Voronoi
cell at o has unit volume. Then for each x ∈ En, there is a v = (v1, . . . , vn) ∈ Λ + x such that
v1v2 · · · vn ≤ 2−n.

Building on earlier results and the known connection [210, p. 592] between the two conjec-
tures, Magazinov [172] proves that

SISO2⇒ MINK.
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To describe still further conjectures related to HYP, some terminology is required. Let µ
be a finite Borel measure in En. If A is a Borel set in En, its (lower) outer Minkowski content
with respect to µ is defined by

µ+(A) = lim inf
ε→0+

µ(Aε)− µ(A)

ε
,

where Aε = {x : d(x,A) < ε}. If µ is an isotropic log-concave measure in En,

(13) Isµ = inf
A

µ+(A)

min{µ(A), 1− µ(A)}
= inf
{A: µ(A)≤1/2}

µ+(A)

µ(A)
= 2 inf

{A: µ(A)=1/2}
µ+(A)

is the Cheeger constant of µ, where A represents any Borel set in En. The term derives from
Cheeger’s lower bound [60] λ1 ≥ h2/4 for the least nonzero eigenvalue λ1 of the Laplace–
Beltrami operator on a Riemannian manifold in terms of its Cheeger constant h, defined in a
way corresponding to (13). The right-hand equality in (13) is a consequence of the concavity
of the isoperimetric profile I(µ) of µ, the pointwise maximal function I : [0, 1] → [0,∞)
such that µ+(A) ≥ I(µ(A)) for all Borel sets A in En, proved in suitably general form by
Milman (see [184, Theorem 1.8] and the remarks that follow). In the special case when µ is
the normalized restriction of volume λn to a convex body K in En, Jerison [122, p. 731] states
that the infimum is achieved by an open set that attains

(14) min
{
Hn−1((∂A) ∩ intK) : A ⊂ K is open and λn(A) = λn(K)/2.

}
(The part of ∂A contained in ∂K is not counted by µ+ since µ vanishes outside K.)

Several variants of these concepts are found in the swampy literature surrounding them.
Jerison works with Borel subsets A of a domain Ω in En and calls a set E ⊂ Ω isoperimetric
in Ω if it attains

(15) inf{P (A)/λn(A) : λn(A) = αλn(Ω)},
where 0 < α < 1 is fixed and P (A) is the perimeter of A. The case α = 1/2 is equivalent
to (14). In [122, Conjecture 2.3], he conjectures that when Ω is convex, the boundaries in
Ω of open isoperimetric sets in Ω are Lipschitz graphs. Elsewhere, such as [52] and [167],
sets attaining the infimum in (15) with the ratio λn(A)/λn(Ω) unrestricted are called Cheeger
sets, and the infimum itself the Cheeger constant of Ω, a quite different usage. The endeavor
of finding, computing, and classifying Cheeger sets overlaps with the study of isoperimetric
problems restricted to certain regions or spaces, surveyed by Ros [213].

The following conjecture originates in the work of Kannan, Lovász, and Simonovits [125]
and is expounded at length in [9] and [50, Chapter 14] (see also [10] and [165] for short
surveys).

Kannan–Lovász–Simonovits conjecture (KLS). There is a universal constant C > 0 such that

(16) Isn = min{Isµ : µ is an isotropic log-concave measure in En} ≥ C.

(Recently, authors have often preferred to work with ψµ = 1/Isµ and ψn = 1/Isn instead.)
KLS was motivated by various algorithmic problems, for example, computing the volume of

a convex body; see, for example, [9, Section 1.2] and [165]. (Efficient algorithms that avoid
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appeal to KLS have been proposed by Cousins and Vempala [63].) This application derives
from the following alternate form of the conjecture (see [73, p. 532] or [159, (1.2), p. 3759]):
There is a universal constant C > 0 such that for 0 < α ≤ 1/2 and a Borel subset A of a
convex body K in En with centroid at o such that λn(A) = αλn(K), we have

(17) Hn−1((∂A) ∩ intK) ≥ αC inf
u∈Sn−1

λn−1(K ∩ u⊥).

Taking α = 1/2, this says that, up to a universal constant, the most efficient way to halve
the volume of a convex body is by cutting it with a hyperplane. The algorithmic applications
stem from the use of this fact in repeated bisections. Unfortunately, the equivalence of the
formulation in (17), and the fact that it suffices to prove KLS when µ is the normalized
restriction of volume λn to a convex body in En, appear to be folklore shared by a few
experts, since no proofs have appeared in print.

As we shall explain, KLS sits in the center of a heap of conjectures, all at least as strong
as HYP. We now list a few of these known to be equivalent to KLS, sticking to our Euclidean
setting even though extensions to Riemannian manifolds have been considered.

Poincaré inequality conjecture (POI). There is a universal constant C > 0 such that for every
isotropic log-concave measure µ in En and every smooth function ϕ such that

∫
En ϕdµ = 0,

one has

(18) C

∫
En

ϕ2 dµ ≤
∫
En

‖∇ϕ‖2 dµ.

Exponential concentration conjecture (EXP). There is a universal constant C > 0 such that if
µ is an isotropic log-concave measure in En and g is a 1-Lipschitz function on En, then

(19) µ ({x : |g(x)− Eµg| ≥ t}) ≤ e1−Ct,

where Eµ denotes expectation with respect to µ.

First moment concentration conjecture (FMOM). There is a universal constant C > 0 such
that if µ is an isotropic log-concave measure in En and g is a 1-Lipschitz function on En, then

(20) C

∫
|g(x)− Eµg| dµ ≤ 1,

where Eµ denotes expectation with respect to µ.

Thin shell conjecture (THIN). There is a universal constant C > 0 such that if µ is an isotropic
log-concave measure in En, then

(21) σn =

(∫
En

(‖x‖ −
√
n)2 dµ(x)

)1/2

≤ C.

THIN is sometimes called the variance conjecture, because under its hypotheses, (21) is
equivalent to Varµ ‖X‖2 ≤ Cn, where X is a random variable whose probability density
function is the density of µ; see [50, Lemma 12.3.1] or [75, Lemma 1.4]. (Perhaps for this
reason, the constant σn has been defined differently as supµ σµ, where nσ2

µ = Varµ ‖X‖2. In
the context of THIN, the two definitions are equivalent in view of [50, Lemma 12.3.1] or [75,
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Lemma 1.4].) The question is explicitly stated by Bobkov and Koldobsky [41, p. 46] and arose
from the pursuit of a central limit theorem for convex bodies, as discussed briefly in Note 9.9
and finally achieved by Klartag [133]. Concerning the latter, further information is given
in [16, pp. 363–5] and [50, Chapter 12], and Fresen [87] presents a short proof of Klartag’s
theorem, as well as a proof that it is implied by THIN.

It is known that

KLS⇔ POI⇔ EXP⇔ FMOM⇒ THIN⇒ HYP,

and moreover that these relations hold when µ is fixed.
To the three conjectures equivalent to KLS should be added another, due to Jiang, Lee,

and Vempala [123]. This is slightly too technical to state here, but is, roughly speaking, a
conjectured central limit theorem to the effect that for independent random vectors X, Y
with log-concave probability densities, the random variable X · Y is close to a Gaussian.

That KLS⇒ HYP had apparently been observed by Ball by 2006, the argument appearing
much later in joint work with Nguyen [25, Section 5]. In [25, Theorem 5.1] (see also [50,
Theorem 16.1.1], which we follow here), it is shown that if X, Y are independent random
variables whose probability density function is the density of an isotropic log-concave measure
µ, and

(22) h

(
X + Y√

2

)
− h(X) ≥ κ (h(Z)− h(X)) ,

where 0 < κ < 1, h denotes entropy defined by (5), and Z is the standard Gaussian random
vector, then the isotropic constant Lµ ≤ e1+2/κ. The desired implication now follows from
KLS⇒ POI and [25, Theorem 1.1], the latter proving that if an isotropic log-concave measure
µ with density f satisfies (18), then (22) holds with κ = C/8.

Denote by λ1(µ) the best C such that (18) holds; see [50, Theorem 14.1.5] and the discussion
preceding it. (The notation CP (µ) = 1/λ1(µ) is sometimes used.) When µ is the normalized
restriction of volume λn to a convex body K in En, λ1(µ) = λ1(K), the first eigenvalue of the
Laplacian on K. It is known that

(23)
1

4
Is2
µ ≤ λ1(µ) ≤ π Is2

µ.

These estimates are given by Ledoux [163, (5.8), p. 238] (see also [50, Theorems 14.1.6
and 14.1.7]), with 36 instead of π on the right-hand side. As noted by Klartag [138, p. 3],
the improved constant in (23) was found by De Ponti and Mondino [69]. The inequality on
the left, a form of Cheeger’s inequality λ1 ≥ h2/4 from [60] (proved independently by Maz’ya
[177]), yields KLS ⇒ POI. That on the right, which originates in work of Buser [53], shows
that POI⇒ KLS. The implication POI⇒ EXP was proved by Gromov and Milman [99]. That
EXP ⇔ FMOM ⇒ KLS is due to Milman [184], who also shows that the best constants C
in (19) and (20) equal Isµ, up to a universal constant; see also [9, Sections 1.4 and 1.5] and
[50, Section 14.2], as well as [185] for more general versions of FMOM ⇒ KLS. To show that
POI ⇒ THIN, take ϕ(x) = ‖x‖2 − n in (18), using (2) to check that

∫
En ϕdµ = 0, and then
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apply the inequality at the beginning of the proofs of [50, Lemma 12.3.1] or [75, Lemma 1.4]
to conclude that

(24) σn ≤ 2λ1(µ)−1/2.

Finally, THIN ⇒ HYP was demonstrated by Eldan and Klartag [75] (see also [9, Section 3.1]
and [50, Theorem 12.5.1]), who prove that

(25) Lµ ≤ Cσn

for any isotropic log-concave measure µ in En. These are the only known relationships between
these conjectures. However, Eldan [73] (see also [50, Section 14.6]) proved that

(26) Isn ≥ C

(
(log n)

n∑
k=1

σ2
k

k

)−1/2

,

a strong result towards reversing KLS⇒ THIN.
We mentioned above that it suffices to prove KLS or any of its equivalent statements when µ

is the normalized restriction of volume λn to a convex body K in En. Kolesnikov and Milman
[158, Theorem 12] show that in POI one can further assume that ϕ is a harmonic function
on K. Unlike HYP, for which several reductions have been established (see, for example, [50,
Section 6.2]), little else seems to be known regarding reductions of KLS.

Next, we summarize the evidence for these conjectures. Lee and Vempala [164], who also
provide references for earlier bounds obtained by several authors (see also [50, Chapter 13] and
[101, pp. 1044–5]), use a variant of the stochastic localization method introduced by Eldan
(already mentioned in the discussion above about the proof of HYP) in proving (26). Their
result is σn ≤ Cn1/4, which together with (26) gives Isn ≥ C n−1/4(log n)−1/2. However, in a
remarkable development in which he builds on the methods of [73] and [164], Chen [61] proves
that Isn ≥ C n−o(1). In fact, Chen actually first shows that σn ≤ C no(1), the lower bound for
Isn following from (26) at the cost of a factor of log n. More details about stochastic localization
and the results discussed so far may be found in Eldan’s survey article [74, Section 4]. By
adding other techniques to Chen’s method, substantial improvements on his bounds were
made by Klartag and Lehec [142] (see also Jambulapati, Lee, and Vempala [121]). Like Chen,
these latter authors obtained an upper bound for σn first. Klartag [138] again uses Chen’s
method, but instead applies a refined version of an inequality due to Lichnerowicz (bounding
λ1(µ) from below for so-called t-uniformly log concave measures) to estimate Isn directly. His
bound

(27) Isn ≥ C/
√

log n,

the best currently known, yields σn ≤ C
√

log n (via (24) and the left inequality in (23)). A
dramatic improvement over this bound for σn comes from the work of Guan [100], in which
he proves that

(28) σn ≤ C logψn.
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(Recall that ψn = 1/Isn.) From (27) and (28), it follows that σn ≤ C log log n, which is
currently the best known bound. Combining this with (25), we obtain Ln ≤ C log log n,
where

Ln = sup{LK : K is a convex body in En}.

As was discussed earlier, Klartag and Lehec [143] used Guan’s work in proving that in fact
Ln ≤ C.

A first glimpse at stochastic localization might begin with the “localization lemma” of
Lovász and Simonovits [169, Lemma 2.5], which reduces multidimensional integral inequalities
to those in a single variable. (A similar method was used earlier by Payne and Weinberger
[203].) In particular, inequalities involving integrals over convex bodies K in En are reduced,
by repeated bisection (by volume) of K by hyperplanes, to integrals over line segments. While
effective in some situations, this method does not preserve the isotropic property, and it is
difficult to control the covariance that is then a necessary ingredient in KLS. (The conjecture
for general log-concave measures is that Isµ is bounded below by C divided by the square root
of the spectral norm of the covariance of µ.) Stochastic localization begins with a log-concave
measure µ = µ0 on En instead of a convex body. Roughly speaking, instead of bisecting (by
measure), µ is multiplied by a small linear function with gradient in a random direction, and
this is repeated continuously to produce measures µt, t > 0, that remain log-concave and
whose covariance can be controlled. A lecture by Chen [62] provides an excellent introduction
illustrated by examples.

Kolesnikov and Milman [159, p. 3581] provide a list of references to works that establish
KLS for various classes of convex bodies (i.e., for the normalized restriction of volume λn to
members of these classes), to which they add generalized Orlicz balls (see also [30]). Due
to the relations between the constants in KLS, POI, EXP, FMOM, THIN, and HYP described
above, proving any of the first four conjectures true for a class of convex bodies implies the
same for the other conjectures, and HYP must be true for any class for which THIN is true.
Interestingly, it is not known whether KLS is true for unconditional convex bodies (see [50,
Section 14.5]), but Klartag [134] (see also [9, Section 2.4] and [50, Proposition 12.4.1]) proves
THIN for this class. Alonso-Gutiérrez and Bastero [11] verify THIN for hyperplane projections
and Steiner symmetrizations of unit balls in lnp , p ≥ 1, extending earlier work described in [50,
Section 12.3]. Several other positive partial results are listed in [11, p. 881]; more recently,
Radke and Vritsiou [208], Vritsiou [235], and Dadoun, Fradelizi, Guédon, and Zitt [65] have
confirmed THIN for the unit balls of classical spaces of matrices with the operator norm,
including the Schatten classes.

Alonso-Gutiérrez, Prochno, and Thäle [13, Theorem A] show that a certain statement (too
technical to reproduce here) about moderate or large deviations for isotropic log-concave
random vectors implies that KLS is false.

The following statement was posed as a question by Lee and Vempala [165, p. 29].

(LSOB). There is a universal constant C > 0 such that for every isotropic log-concave measure
µ in En and every smooth function ϕ such that

∫
En ϕ

2 dµ = 1, one has the log-Sobolev
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inequality

(29) C Entµ(ϕ2) ≤
∫
En

‖∇ϕ‖2 dµ,

where

Entµ(ϕ) =

∫
En

ϕ logϕdµ−
(∫

En

ϕdµ

)
log

(∫
En

ϕdµ

)
.

Setting ϕ = 1 + εg in (29) (cf. [214, p. 119]), it is not hard to check that

Entµ(ϕ2) = 2ε2 Varµ(g) +O(ε3),

where

Varµ(g) =

∫
En

g2 dµ−
(∫

En

g dµ

)2

,

and
∫
En ‖∇ϕ‖2 dµ = ε2

∫
En ‖∇g‖2 dµ. Letting ε → 0, we see that the log-Sobolev inequality

(29) implies Poincaré’s inequality (18) (in a slightly more general form), so via POI, we obtain

LSOB⇒ KLS.

Moreover the constant in (18) is the same as that in (29). Stavrakakis and Valettas [229]
prove that LSOB holds for the class of lnp balls with 2 ≤ p ≤ ∞. However, according to
E. Milman (private communication), LSOB is actually false in general, failing for example for
the exponential measure with density ‖x‖1/2

n and for normalized restriction of volume λn to
Bn

1 . See the article [166] by Lee and Vempala for related results.
There are at least three other conjectures that have been claimed to be at least as strong

as KLS. To state the first, recall that if f and g are measurable functions on En, their infimal
convolution is defined by

f � g(x) = inf
y∈En
{f(x− y) + g(y)}.

The following conjecture from [162, p. 148] is sometimes called the Lata la–Wojtaszczyk con-
jecture.

Infimal convolution conjecture (INFC). There is a universal constant C > 0 such that if µ is
an even log-concave measure in En and ϕ : En → [0,∞] is measurable, then(∫

En

eϕ� (Λ∗µ( ·C )) dµ

)(∫
En

e−ϕ dµ

)
≤ 1,

where

(30) Λ∗µ(x) = sup
y∈En

{
x · y − log

∫
En

ey·z dµ(z)

}
,

for x ∈ En.

The function Λ∗µ is sometimes called the Cramer transform of µ. It is the Legendre trans-
form (see [227, p. 40]) of the logarithmic Laplace transform Λµ of µ (the second term on the
right of (30)). The function Λµ is always convex with Λµ(o) = 0, and if µ is log-concave, it
is also C∞-smooth and strictly convex in the open set where it is finite; see [146, p. 16]. In
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particular, Λ∗µ is a convex function. INFC is the focus of [50, Chapter 15], where it is noted
that the conjecture is true for product measures, rotationally invariant measures, and uniform
distributions on unit balls in lnp , p ≥ 1. It is claimed in [229, p. 363] that INFC implies KLS,
and this is repeated in [50, Theorem 15.3.13]. However, the proof of the latter requires that
the measure µ is even, so one can only conclude that INFC implies a symmetric version of KLS
in which the measure µ in (16) is even.

In fact, the basic question of whether KLS (or its equivalent version, see (17)) is equivalent
to its symmetric version, in which the measure µ in (16) is even (or the convex body K in
(17) is centered, respectively), seems to be open at the present time. It is known that THIN is
equivalent to its symmetric version; see [9, p. 46]. As observed by E. Milman, it follows from
this and (26) that one can get from the symmetric version of KLS to KLS itself at the cost of
a log n factor.

If 1 ≤ m ≤ n, the lower Minkowski m-content of a Borel set A in En is defined by

Mm
∗ (A) = lim inf

ε→0+

λn(A+ εBn)

κn−m εn−m
.

See, for example, [77, p. 273].

Waist conjecture (WAI). There exists a universal constant C > 0 such that if 1 ≤ k ≤ n and
K ∈ Kn0 with λn(K) = 1, there is a φ ∈ SLn such that if f : φK → Ek is continuous, there is
an x ∈ Ek for which

(31) Mn−k
∗ (f−1(x)) ≥ Ck.

WAI is stated as a question by Klartag [135, p. 131]. He proves that (31) is true with Ck

replaced by Cn−k on the right-hand side and states without proof that

WAI⇒ KLS.

Two hyperplane conjecture (2HYP). There exists a universal constant C > 0 such that if
K ∈ Kn0 is centered and the open set E ⊂ K with λn(E) = λn(K) attains the infimum in
(13), there is a half-space Γ such that

(intK) ∩ Γ ⊂ E, (intK) ∩ (−Γ) ⊂ (intK) \ E, and λn(K ∩ Γ) ≥ C λn(K).

2HYP was proposed by Jerison [122, Conjecture 6.4]. Loosely speaking, it says that the
interface between the isoperimetric set E for intK and the complement of E in intK is
confined to the relatively small region between the hyperplanes that bound Γ and its reflection
−Γ in the origin. From [122, Proposition 6.6], due to E. Milman, one can conclude that 2HYP
implies the symmetric version of the alternate form (17) of KLS. The reader of [122, p. 729]
should be aware that in [122], the latter is taken to be KLS itself, but, as was mentioned
above, it is not known whether KLS is equivalent to its symmetric version.

Problem 8.5

The problem remains open, but the following small observation may be relevant. Suppose L
is a generalized intersection body. Then ρL = Rµ ∈ C(Sn−1), where µ is a signed finite even
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Borel measure in Sn−1. Following the approach in the proof of Theorem 4.1.16, we can apply
the Jordan decomposition theorem to conclude that there are finite even Borel measures µj
in Sn−1, j = 1, 2, such that µ = µ1 − µ2. If

(32) Rµj ∈ C(Sn−1),

and ρLj
= Rµj, for j = 1, 2, then L1 and L2 are intersection bodies such that L1 = L+̃L2.

Thus this problem has an affirmative answer whenever (32) holds.

Problem 8.6

Until recently, there was one result, pertaining to the case when i = n− 1. (The statement
in Note 8.6 concerning the case i = 1 is erroneous.) Fish, Nazarov, Ryabogin, and Zvavitch
[78] prove that if L is a star body in En sufficiently close to Bn in the Banach–Mazur metric,
then ImL→ Bn as m→∞ in the Banach–Mazur metric. For such L, if ImL = cL for some
c > 0 and m ∈ N, then L is a centered ellipsoid.

However, when i = n − 1, a slight modification of the problem has now been completely
solved by Milman, Shabelman, and Yehudayoff [186]. If n ≥ 3 and the hypothesis that I2L
is homothetic to L is replaced by I2L = cL for some c > 0 (a stronger, but more natural
assumption), then [186, Theorem 1.1] states that L must be a centered ellipsoid. Moreover,
the same result holds, modulo sets of measure zero, if L is a Borel set star-shaped with
respect to the origin; see [186, Remark 1.4]. The proofs depend on a novel use of continuous
Steiner symmetrization, first employed by Rogers [212] in proving the result often called the
Brascamp-Lieb-Luttinger inequality. The authors point out that if n = 2, then I2L = 4L
holds for any centered star body.

Problem 8.7

Regarding the case i = 1, the statement in Note 8.6 is misleading. Grinberg and Zhang
[337book, Corollary 9.8] show that when n ≥ 3 (the condition is omitted), if I1L = cL for
some c > 0 (note that this implies that L is centered), then L is a centered ball. However,
this nice result has no bearing on Problem 8.6.

With the slightly stronger assumption that IL = cL for some c > 0, Milman, Shabelman,
and Yehudayoff [186, Corollary 1.2] provide a complete solution: If n ≥ 3, then L must be a
centered ball. As with their solution of Problem 8.6, the same result holds, modulo sets of
measure zero, if L is a Borel set star-shaped with respect to the origin; see [186, Remark 1.4].
When n = 2, we have IL = 2L whenever L is invariant under a rotation by π/2 about the
origin. The authors show that their result for n ≥ 3 is a consequence of their solution of
Problem 8.6. Indeed, if IL = cL for some c > 0, then I2L = I(cL) = cn−1IL = cnL, so
L is a centered ellipsoid by [186, Theorem 1.1]. Then L = φBn for some φ ∈ GLn, so by
Theorem 8.1.6, we have

c φBn = cL = IL = | detφ|φ−tIBn = | detφ|κn−1φ
−tBn.

Therefore φtφBn = (κn−1/c)| detφ|Bn, so up to scaling, φ is an orthogonal transformation
and hence L is a centered ball.
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Problem 8.8

Gardner, Ryabogin, Yaskin, and Zvavitch [90] answer part (i) of this problem by construct-
ing coaxial convex bodies of revolution in En, n ≥ 3, such that one body is centered and the
other is not centrally symmetric, while both have the same inner section function. Shortly
after, Nazarov, Ryabogin, and Zvavitch [196] went further by constructing an asymmetric con-
vex body of revolution in En, n ≥ 3, with a constant inner section function, thereby solving
part (ii) of the problem. (For n = 4, this was achieved by the same authors earlier in [195].)

Problem 8.9

Nazarov, Ryabogin, and Zvavitch [195] provide a strong negative answer to part (i) of this
problem when n ≥ 4 is even, by constructing non-congruent coaxial bodies of revolution K
and L with ΠK = ΠL, CK = CL, and IK = IL. Parts (ii) and (iii) appear to be open.

Problem 9.1

The problem is also stated by Schneider [227, (10.80), p. 570], who provides further com-
mentary in [227, Notes 2 and 6, pp. 576–8].

Petty’s conjectured projection inequality remains open and is one of the great challenges
in convex geometry. In view of the Blaschke–Santaló inequality for centered convex bodies,
Theorem 9.2.11, it is stronger than the Petty projection inequality, Theorem 9.2.9. The fact
that the extremal bodies must be zonoids K such that Π2K is homothetic to K, already
mentioned in Note 9.4, is detailed in [227, pp. 570–1]. This connection allows Saroglou and
Zvavitch [226, Theorem 1.3] to prove that in a certain technical sense (see the report for
Problem 4.4 above and the remarks in [226, p. 616]), ellipsoids are locally extremal bodies.

Saroglou [223, Theorem 3] proves that the usual Steiner symmetrization technique cannot
be applied, at least in the obvious way, by showing that for n ≥ 3, there exist K ∈ Kn0
and u ∈ Sn−1 such that λn(Π(SuK)) > λn(ΠK). He also proves that Petty’s conjectured
projection inequality holds in E3 when K is a cone or a centered double cone.

Problem 9.2

Mahler’s conjecture, still an outstanding open problem in convex geometry, has received a
great deal of attention in recent years. Here we shall only update and add some details to the
report of Schneider [227, pp. 564–6], who summarizes developments prior to 2014.

Mahler’s conjecture has two flavors, one (MAH1) for convex bodies containing the origin
in their interiors (not just those with centroid at the origin, as stated in Problem 9.2) and
the other (MAH2) for centered bodies. As Schneider points out, Mahler [173] actually only
published MAH2, while MAH1 appeared in print much later, in [5, p. 150] and [102, (10.9),
p. 59]. Some are of the opinion that MAH1 may be easier, because 4n, a regular simplex in En
with unit volume and centroid at the origin, is thought likely to be the unique extremal body,
up to a nonsingular linear transformation, while for MAH2, the extremal bodies are conjectured
to be the Hanner polytopes (the term deriving from Hanner’s article [107], but also sometimes
associated to the names Hansen and Lima [108]), up to nonsingular linear transformations.
We follow Schneider [227, pp. 564–5] in defining Hanner polytopes recursively: Closed line
segments are Hanner polytopes, and a centered polytope in En is a Hanner polytope if it is
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either the convex hull of the union, or the sum, of two centered Hanner polytopes contained in
complementary subspaces. In E2 and E3, the only Hanner polytopes are centered cubes and
octahedra, but there are many more in higher dimensions. To the early references provided
in Note 9.4, it should be added that Meyer [182] also confirmed the anticipated equality case
when n = 2.

The quantity v(K) = λn(K)λn(K∗) is often called the volume product or Mahler volume of
K. The Bourgain–Milman bound mentioned in Note 9.4 is that v(K) ≥ cn1 v(Cn) when K is
centered, where Cn = [−1/2, 1/2]n and c1 is a universal constant, but Bourgain and Milman
also showed that v(K) ≥ cn2v(4n) for arbitrary K containing the origin in its interior, where
c2 is a universal constant. Proofs are also given in [16, Theorems 8.2.2 and 8.5.1] and [50,
Theorem 7.4.3]. See also the recent survey paper on the volume product by Fradelizi, Meyer,
and Zvavitch [83], which overlaps significantly with the report below on the current status of
Mahler’s conjecture; moreover, it covers upper as well as lower bounds for the volume product
and gives some details of proofs of some of the main results.

Mahler’s conjecture received wide exposure from a 2007 post by Tao [230] in his blog. This
article and the thread of comments it generated are still entertaining and informative. Even
known results are continually being revisited. For example, both Meckes [181] and Saroglou
[224] give different proofs of Reisner’s result for zonoids mentioned in Note 9.4, Meckes via
Holmes–Thompson intrinsic volumes (see Note 4.1 for a special case) and Saroglou employing
shadow systems. A probabilistic proof of Mahler’s conjecture for planar centered bodies is
given by Tointon [232] and Rebello Bueno [209] finds a stochastic inequality in the plane that
implies MAH2 when n = 2.

Proving MAH1 (or MAH2) up to a sub-exponential factor, i.e., showing that for all n ≥ 2,

v(K) ≥ cn v(4n) (or v(K) ≥ cn v(Cn), respectively) where c
1/n
n → 1 as n → ∞, is enough to

establish MAH1 (or MAH2, respectively) itself. This observation is due to Tao [231, p. 219],
who uses the functional analogues just mentioned together with what he calls the “tensor
power trick.” The same trick underlies a proof of this fact for MAH2 given independently by
Berezovik and Karasev [31, Theorem 2.1].

In a remarkable work, Iriyeh and Shibata [114] prove MAH2 in E3, both the inequality and
the fact that equality holds if and only if either K or K∗ is a centered parallelepiped. Aspects
of the Iriyeh–Shibata theorem are simplified by Fradelizi, Hubard, Meyer, Roldán-Pensado,
and Zvavitch [80], who also provide a stability version. Apart from this, only the following
partial results, which nevertheless represent a very significant effort, are known.

Kuperberg [161] proved the so-called bottleneck conjecture, which asserts that the volume of
a certain domain K♦ ⊂ K ×K∗ ⊂ E2n, where K ∈ Kn0 is centered, is minimized if and only if
K is an ellipsoid. (In its original form posed by Kuperberg [484book], K♦ = conv (K+∪K−),
where K± = {(x, y) ∈ K ×K∗ : x · y = ±1}, while in [161], the convex hull is replaced by the
union of line segments joining points in K+ to points in K−.) This leads to improvements in
the Bourgain–Milman bounds. In [161, Corollaries 1.6 and 1.8], Kuperberg shows that one can
take c1 = π/4 in the centered case and c2 = π/(2e) in the general case. These are currently
the best bounds known when n ≥ 4. Nazarov [193] found a completely different approach
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based on multivariable complex and Fourier analysis, which yields the slightly weaker constant
c1 = (π/4)3 for the centered case. Variations of Kuperberg’s and Nazarov’s proofs, and
commentary of various lengths, are provided by Berndtsson [32], [33], B locki [37, Section 9],
[38], [39], Fradelizi, Meyer, and Zvavitch [83], Mastrantonis and Rubinstein [176] (who also
extend Nazarov’s method to the general case), and Ryabogin and Zvavitch [221]. (We note
in passing that Bianchi and Kelly [35] find a proof of the Blaschke–Santaló inequality for
centered convex bodies, Theorem 9.2.11, based on Nazarov’s approach.) Yet another way of
recovering the Bourgain–Milman bounds, using techniques generally more familiar in convex
geometry, is due to Giannopoulos, Paouris, and Vritsiou [97].

Nazarov, Petrov, Ryabogin, and Zvavitch [194] prove that Cn is a strict local minimizer for
the volume product in the class of centered convex bodies endowed with the Banach–Mazur
metric. Kim and Reisner [130] show that 4n is a strict local minimizer in the class of all
convex bodies, and Kim [129] significantly extends the result in [194] by showing that it holds
not just for Cn but for all Hanner polytopes. Further evidence for the conjectured minimizers
is obtained by Reisner, Schütt, and Werner [211], who prove that such a body cannot be C2

+

at any point of its boundary. Related results were obtained by Harrell, Henrot, and Lamboley
[109]. Also related are the quantitative lower bounds for the volume product in terms of
curvature obtained by Nakamura and Tsuji [192] via a connection to Ornstein–Uhlenbeck
flow.

Mahler’s conjecture has been verified for some special classes of bodies. Summaries are given
by Alexander, Fradelizi, Garćıa-Lirola, and Zvavitch [6], who study a related problem in finite
metric spaces, and by Karasev [126], who employs symplectic methods to deal with the case
of central hyperplane sections or projections of lp balls or of Hanner polytopes. In addition to
these and zonoids (see Note 9.4), the list includes bodies of revolution, polytopes (or centered
polytopes) in En with at most n + 3 vertices (or at most 2n + 2 vertices, respectively), and
unconditional bodies and some generalizations of them; see [20] and [83, Section 3.6] for
references. Barthe and Fradelizi [29] confirm the conjecture for bodies invariant under the
action of a Coxeter group. This line of investigation was continued by Iriyeh and Shibata
[115], who study the variant of Mahler’s conjecture in which the minimum of v(K) is sought
over those K ∈ Kn0 that are invariant under a discrete subgroup G of O(n). Note that MAH1
and MAH2 correspond to G = {Id} and G = {Id,−Id}, respectively, where Id is the n × n
identity matrix. They focus on the case n = 3 and present the state of play in a table in [115,
p. 5]. In [116], the same authors deal with the case when G is the special orthogonal group of
the cube or simplex in En. They obtain further results in the same vein in [117].

Functional versions of the inequalities at hand go back to Ball’s PhD thesis, where in [23,
Corollary 4.5] he proved a functional version of Theorem 9.2.11, the Blaschke-Santaló inequal-
ity for centered convex bodies. Corresponding versions of the Bourgain-Milman theorem were
established by Artstein-Avidan, Klartag, and Milman [18] and Fradelizi and Meyer [82], and
in the latter paper the following functional analogues of MAH1 and MAH2 are proposed.
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If ϕ : En → R ∪ {∞} is a convex function such that 0 <
∫
En e

−ϕ(x) dx <∞, then∫
En

e−ϕ(x) dx

∫
En

e−Lϕ(x) dx ≥ en,

and for even ϕ, en can be replaced by 4n.

Here Lϕ is the Legendre transform of ϕ, defined for x ∈ En by Lϕ(x) = supy∈En(x·y−ϕ(y)).
These conjectures are shown to be equivalent to MAH1 and MAH2 in [82, Section 2], and
precise equality conditions are proposed that correspond to those conjectured for MAH1 and
MAH2. Fradelizi and Nahkle [84] prove the conjectured inequality and equality condition
for even functions when n = 2 and generalize this result to certain even s-concave functions,
s > −1/n, in [85]. The survey [83, Sections 4 and 5] (see also [227, pp. 523–4]) discusses various
aspects of the functional inequalities in some detail, and corresponding inequalities involving
more than one body or function are treated in [83, Section 6]. The Mahler conjecture for
various classes of functions and in other settings are examined by Fradelizi, Gozlan, Sadovsky,
and Zugmeyer [79].

In the remainder of this report, we shall discuss various other results and conjectures related
to MAH1 or MAH2.

Chan and Pak [57] note that an inequality for finite posets called the reverse Sidorenko
inequality is a special case of MAH1. See also the article by Artstein-Avidan, Sadovsky, and
Sanyal [20].

Some Lp versions are formulated by Berndtsson, Mastrantonis, and Rubinstein [34], who
introduce ideas of interest beyond Mahler’s conjecture. If K is a compact (not necessarily
convex) body in En and p > 0, they define its Lp-support function hp,K by

hp,K(x) = log

(
1

λn(K)

∫
K

ep x·y dy

)1/p

for x ∈ En. In [34, Section 2], it is shown that hp,K is a convex function (even if K is not
convex), that hp,K ≤ hq,K ≤ hK for p ≤ q, and that limp→∞ hp,K = hK . In [34, Section 3], the
Lp-polar body K∗,p of K is defined via the gauge function

‖x‖K∗,p =

(
1

(n− 1)!

∫ ∞
0

e−hp,K(rx)rn−1 dr

)−1/n

for x ∈ En, so that K∗,p = {x ∈ En : ‖x‖K∗,p ≤ 1}. Using the fact that
∫∞

0
e−assn−1 ds =

(n − 1)! a−n, one sees that limp→∞ ‖x‖K∗,p = hK(x) = ‖x‖K∗ and hence limp→∞K
∗,p = K∗.

One also has K∗ ⊂ K∗,q ⊂ K∗,p when p ≤ q. Unlike the usual polar operation, ∗,p is not a
duality, since (K∗,p)∗,p 6= K, in general, even when K is a centered convex body. With these
concepts in hand, the authors define the Lp-Mahler volume Mp(K) of K by

Mp(K) = n!λn(K)λn(K∗,p) = λn(K)

∫
En

ehp,K(x) dx.

Note that as p → ∞, Mp(K) approaches n! v(K) from above; the authors justify the n!
factor in their definition by noting that Mp(K × L) = Mp(K)Mp(L). By [34, Lemma 4.6],
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Mp(φK) = Mp(K) for any φ ∈ GLn. Theorem 9.2.11, the Blaschke-Santaló inequality for
centered convex bodies, is generalized in [34, Theorem 1.6], which states that Mp(K) ≤
Mp(B

n) for 0 < p ≤ ∞, but for finite p the precise equality condition remains open. In [34,
Conjectures 1.3 and 1.4], the authors conjecture that when 0 < p ≤ ∞,

(33) Mp(K) ≥Mp(Cn)

for centered convex bodies K in En, and

(34) Mp(K) ≥Mp(4n)

for arbitrary convex bodies K in En. (The case p = 1 of (33) was first conjectured by B locki
[38, p. 56] and (34) appeared in a different form in [176, Conjecture 10].) They further
conjecture that the lower bounds in (33) and (34) are attained if and only if K is an image of
Cn (or 4n, respectively) under a nonsingular linear transformation. In [34, Lemma 3.12], it
is shown that (34) for all p ∈ (0,∞) implies MAH1 and (33) for all p ∈ (0,∞) implies MAH2.

The Mahler volume turns up in the following conjecture that arose from discussions between
R. Freij, M. Henze, G. Kalai, M. Schmidt, and G. Zieger; see [76, Conjecture 10.1].

If P is a centrally symmetric n-dimensional convex polytope in En, then

(35) |Flags(P )| ≥ (n!)2

2n
v(P ).

Here Flags(P ) denotes the set of flags of P , i.e., sequences (F0, F1, . . . , Fn) of faces of P
such that dimFi = i and Fi ⊂ Fi+1 for i = 0, 1, . . . n−1. Since MAH2 says that v(P ) ≥ 4n/n!,
it and (35) would prove Kalai’s flag number conjecture, which reads as follows.

If P is a centrally symmetric n-dimensional convex polytope in En, then

(36) |Flags(P )| ≥ 2nn!.

This is a special case of [124, Conjecture C]; the general conjecture, as mentioned in [76,
Introduction], is known to be false. Equality holds in (35) and (36) if and only if P is a Hanner
polytope. The relationship between these conjectures is strengthened by a further one due to
Faifman, Vernicos, and Walsh [76, Conjecture 1.1], set in the framework of Funk geometry:

Let K be a convex body in En, let r > 0, and let VolK(BK(r)) denote the (Holmes–
Thompson) volume of the (forward) ball in the Funk geometry of radius r centered at o. Then
VolK(BK(r)) is minimized when K is an n-dimensional simplex with centroid at o. If K is
centrally symmetric, VolK(BK(r)) is minimized when K is a Hanner polytope.

A Funk metric defined on the interior of a convex body in En (not a true metric, but
a non-reversible, i.e., not symmetric, pseudometric) gives rise to a particular type of Finsler
geometry. The lack of symmetry necessitates defining both forward and backward balls. More
detailed information and background may be found in [76], [83, Section 7.3], and [202], for
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example. It is known that as r → 0, VolK(BK(r)) is asymptotic to rnv(K), and in [76,
Theorem 1.2], it is proved that if P is an n-dimensional convex polytope, then

lim
r→∞

κn
rn

VolP (BP (r)) =
|Flags(P )|

n!

2

.

It follows that [76, Conjecture 1.1] would yield MAH1 and MAH2 as r → 0 and (36) as r →∞.
In [76, Theorem 1.3], the conjecture is proved true for unconditional convex polytopes.

The report for Problem 8.3, the slicing problem, includes the direct link found by Klartag
[136], namely

SISO1⇒ MAH1,

where SISO1 denotes the sharp isotropic constant conjecture for arbitrary convex bodies. See
Figure 1, which also illustrates the relations between other conjectures related to Mahler’s

conjecture. Fradelizi and Maŕın Sola [81] find a functional version of Klartag’s result: If P̂ (n)

holds, then the functional version of MAH1 stated above also holds in En. Here P̂ (n) and a
variation, P (n), are the statements introduced shortly after that of SISO1 in the report for

Problem 8.3. It is explained in [81] why this result does not work when P̂ (n) is replaced by
P (n).

Iriyeh and Shibata [114, Section 1.2] note that their result on MAH2 bears on Viterbo’s
conjectured isoperimetric inequality for the symplectic capacities of convex bodies in E2n

endowed with the standard sympletic structure. A symplectic capacity c is a set function
with the following properties: monotonicity, invariance under symplectomorphisms, positive
homogeneity of degree 2, and the normalization c(B2n) = c(B2 × E2n−2) = π. The smallest
symplectic capacity is the Gromov width

cG(K) = sup{πr2 : rB2n embeds symplectically into K},

and the largest symplectic capacity is the cylindrical capacity

cZ(K) = inf{R : K embeds symplectically into Z2n(R)},

where Z2n(R) is the cylinder {z ∈ Cn : π|z1|2 ≤ R}. Further examples are listed in [1] and
[103], where more information and references can be found. Several non-equivalent symplectic
capacities agree on convex bodies. In particular, [103, Theorem 1.12] (ascribed there to several
different authors) implies that if K is a convex body in E2n, then

(37) cHZ(K) = cSH(K) = c1
EH(K),

where cHZ , cSH , and c1
EH are the Hofer–Zehnder capacity, the Viterbo capacity, and the

first Ekeland–Hofer capacity, respectively. Their common value is often called the Ekeland–
Hofer–Zehnder capacity and denoted by cEHZ(K). Formulas for this quantity, including a
combinatorial expression when K is a polytope, are provided by Haim-Kislev [105].

Viterbo’s conjecture [234, p. 426] is as follows.
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Viterbo’s conjecture (VIT). If K ∈ K2n and c is any symplectic capacity, then

(38)
c(K)

c(B2n)
≤
(
λ2n(K)

λ2n(B2n)

)1/n

.

We shall label the symmetric case of Viterbo’s conjecture, i.e., the conjecture restricted to
centrally symmetric K ∈ K2n, by VIT2.

The surprising connection with Mahler’s conjecture was discovered by Artstein-Avidan,
Karasev, and Ostrover [17, Theorem 1.6], who showed that

VIT2⇒ MAH2.

The proof follows easily from c(B2n) = π and the fact, proved in [17, Theorem 1.7], that the
Hofer–Zehnder capacity cHZ of K × K∗, where K ∈ Kn is centered, equals 4. Conversely,
MAH2 implies VIT2 when c = cHZ for bodies of this form, so the Iriyeh–Shibata theorem
yields this special case of VIT2 when n = 3; see [114, Corollary 1.3].

It was mentioned above that MAH1 and MAH2 are unaffected by the insertion of a sub-
exponential factor on their right-hand sides. Berezovik and Karasev [31, Theorem 7.1] prove
an analogous result for the following consequence of VIT:

(39) λ2n(K) ≥ cEHZ(K)n

n!
,

where K is a convex body in E2n and cEHZ is the Ekeland-Hofer-Zehnder capacity. The
authors define the symplectic polar body Kω of a convex body K in E2n containing the origin
in its interior by

Kω = {x ∈ E2n : ω(x, y) ≤ 1 for all y ∈ K},
where ω is the standard symplectic form on E2n. They note that Kω = JK∗, where J is the
standard complex structure rotation, and conjecture that when Kω = K (a condition they
show implies that K is centrally symmetric), λ2n(K) ≥ 2n/n!. This conjecture is shown in
[31, Theorem 4.3] to be equivalent to MAH2. In view of (39), the implication VIT2⇒ MAH2
follows if cEHZ(K) ≥ 2 whenever Kω = K, but [31, Theorem 5.1] provides an even stronger
result, that in fact cEHZ(K) ≥ 2 + 1/n whenever K is centrally symmetric and Kω ⊂ K.

Viterbo [234, Theorem 5.1] proved that (38) holds with a factor linear in n on the right-
hand side. This was substantially improved by Artstein-Avidan, Milman, and Ostrover [19],
who proved that (38) holds up to a universal constant factor. As noted in [2, p. 692], (38)
holds when c = cG, the Gromov width. It is also true for ellipsoids, and Abbondandolo and
Benedetti [1, Corollary 2] prove that (38) holds for sufficiently smooth K in a neighborhood
of B2n. Cases where equality holds in (38) are discussed by Balitskiy [22] and Karasev and
Sharipova [127]. Rudolf [216] finds reformulations of VIT that are variants of Moser’s still-
unsolved worm problem.

In [3, Section 4], Akopyan, Balitskiy, Karasev, and Sharipova show that MAH1 does not
follow from VIT. However, Haim-Kislev and Ostrover [106] prove that VIT is actually false for
all n ≥ 2. Before describing their counterexample, we mention another related conjecture.



40 RICHARD J. GARDNER

The fact (see (37)) that several non-equivalent symplectic capacities agree on convex bodies
suggests that perhaps they all do, and this conjecture has been around for some time (see [110,
Conjecture 1.9], [178, Problem 53, p. 572], and [199, Conjecture 5.1]). According to Hermann
[110, Remark 1.8], it is probably over 30 years old. Gutt, Hutchings, and Ramos [103] call it
the strong Viterbo conjecture. They prove, among other results, that it holds in E4 for a class
of bodies they call monotone toric domains. Cristofero–Gardiner and Hind [64] generalize this
result to higher dimensions. Edtmair [72] proves the conjecture for C3 convex bodies in E4 in
a neighborhood of B4. However, the conjecture is false for all n ≥ 2, because if it were true,
the fact that Gromov width cG satisfies (38) would imply that VIT is true. Nevertheless, the
following remains a possibility.

Symmetric strong Viterbo conjecture (SSV). All symplectic capacities agree on centrally sym-
metric convex bodies.

Again since cG satisfies (38), we have

SSV⇒ VIT2.

Let P be the regular pentagon P = conv {e2kπi/5, k = 0, . . . , 4} ⊂ E2 and let φ be the clock-
wise rotation by π/2 about the origin in E2. Haim-Kislev and Ostrover [106, Proposition 1.3]
find that

cEHZ(P × φP ) = 2 cos π
10

(
1 + cos π

5

)
.

Since λ2(P ) = (5/2) sin(2π/5), a computation yields

cEHZ(P × φP )

2λ4(P × φP )
=
cEHZ(P × φP )

2λ2(P )2
=

√
5 + 3

5
> 1,

contradicting (38).
It is worth mentioning that there is evidence that the utility of symplectic methods in

convex geometry may extend far beyond Mahler’s conjecture. In a fascinating paper, Akopian,
Karasev, and Petrov [4] show that a conjectured weak finite subadditivity property of the
Hofer–Zehnder capacity would recover the results of Ball on Bang’s plank problem, another
major open question from a different area of convex geometry.

A further development hails from the birth of systolic geometry in 1949, when Loewner
discovered that

area (T2)

sys(T2)2
≥
√

3

2
,

where T2 is the 2-torus equipped with any Riemannian metric g, and the systole sys denotes
the least length of a noncontractible loop. Loewner’s inequality appeared in print a few years
later, in an article by his student Pu [206], who proved the corresponding inequality for the
projective plane P2, with constant 2/π on the right-hand side and equality precisely for the
round geometry. In the convex geometry setting, Pu’s theorem implies that if K is a centrally
symmetric convex body in E3 with sufficiently smooth boundary, then λ2(∂K)/sys(∂K)2 ≥
1/π, where sys(∂K) is the least length of a closed geodesic; see, for example, [14, p. 649].
Equality holds when K = B3, but there are non-symmetric convex bodies K for which the
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ratio λ2(∂K)/sys(∂K)2 is arbitrarily close to 1/2
√

3 < 1/π. Inequalities such as Loewner’s
and Pu’s are termed isosystolic inequalities and can be viewed as reverse forms of standard
isoperimetric inequalities. Álvarez Paiva, Balacheff, and Tzanev [15, Conjecture II and p. 968]
make the following conjecture.

(ABT). If a reversible optical hypersurface in the cotangent bundle of Pn encloses a volume
V , it carries a periodic characteristic whose action is at most V 1/n/2. Moreover, this short
characteristic can be chosen so that its projection onto the base manifold is a non-contractible
closed geodesic.

(In [15], V is n! times the usual symplectic volume.) Reversible optical hypersurfaces are
those whose intersections with cotangent spaces are quadratically convex (i.e., all osculating
quadratics are ellipsoids) and centered closed hypersurfaces. As is explained in [15], statements

such as ABT have implications in the geometry of numbers. According to J. C. Álvarez Paiva
(private communication), a stronger “folklore” conjecture may be formulated in terms of
Finsler geometry:

Finsler metric periodic geodesic conjecture (FPG). A Finsler metric on n-dimensional real
projective space Pn with the same Holmes–Thompson volume as the canonical metric carries
a non-contractible periodic geodesic whose length is at most π.

By [15, p. 968], ABT is the special case of FPG that applies to reversible Finsler metrics F
(those for which F (−v) = F (v) for all tangent vectors v). This fact and [15, Theorem VII]
means that

FPG⇒ ABT⇒ MAH2.

No relation between FPG and MAH1 is known. In the same paper in which they prove the local
version of VIT mentioned above, Abbondandolo and Benedetti [1] also establish a local version
of FPG. For n = 2, ABT was proved by Ivanov [120], who thereby extended Pu’s inequality.
In the language of contact geometry, an odd-dimensional counterpart of symplectic geometry,
both ABT and VIT can be viewed as saying that under an appropriate convexity assumption,
“Zoll contact forms, i.e., those such that all the orbits of the induced Reeb flow are periodic
with the same period, have minimal contact systolic volume,” where the systolic volume is
the general term for quantities such as those on the left-hand sides of Loewner’s and Pu’s
inequalities. Despite this commonality, no direct implication between ABT and VIT seems to
be known, nor has a natural conjecture been formulated that implies both of them.

Problem 9.3

This problem, also stated by Schneider [227, (9.57), p. 515], has now been completely solved
by E. Milman and Yehudayoff [187]. Before describing their admirable results, we summarize
a couple of earlier developments.

Dafnis and Paouris [67] introduced the normalized ith affine quermassintegral, which can
be defined for K ∈ Kn0 and 1 ≤ i ≤ n− 1 by

Φ[i](K) = λn(K)−1/n

(
κn
κi

)1/i

Φn−i(K)1/i,
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and noted that Problem 9.3 is equivalent to asking whether

Φ[i](K) ≥ Φ[i](B
n),

with equality if and only if K is an ellipsoid. They asked whether there exists a universal
constant c1 > 0 such that

Φ[i](K) ≥ c1

√
n/i,

for 1 ≤ i ≤ n − 1. This was proved by Paouris and Pivovarov [201, Theorem 5.1], providing
an affirmative answer to Problem 9.3 in the asymptotic sense, but this is now a consequence
of [187, Theorem 1.2].

Zou and Xiong [239] prove the inequality

κ(n−i)/n
n λn(PiK)i/n ≤ Φn−i(K),

for 1 ≤ i ≤ n − 1, where PiK, 1 ≤ i ≤ n, is an ellipsoid they call the ith projection mean
ellipsoid, defined via a constrained optimization problem. Equality holds when 2 ≤ i ≤ n− 1
if and only if K is an ellipsoid and when i = 1 if and only if there is a φ ∈ SL(n) such that
φK has constant width. They note that PnK is the so-called Petty ellipsoid, i.e., the L1 John
ellipsoid (see p. 381). It is known that λn(K) ≥ λn(PnK) but the authors show that it is not
generally true that λn(K) ≥ λn(PiK) when 1 ≤ i ≤ n− 1.

As was mentioned above, Milman and Yehudayoff [187] have now solved Problem 9.3. More-
over, their results are stronger in two ways. Firstly, they prove in [187, Theorems 1.2 and 5.1]
that for 1 ≤ i ≤ n− 1 and u ∈ Sn−1, we have

Φn−i(K) ≥ Φn−i(SuK),

with equality for all u ∈ Sn−1 if and only if K is an ellipsoid, where SuK is the Steiner
symmetral of K in the direction u. This surprising result is new even for i = n − 1. (Note
that in [187] the affine quermassintegrals are indexed differently to the usual custom.) This
yields the desired inequality via the usual method of successive Steiner symmetrizations (see
Lemma 9.2.3). Secondly, they show in [187, Theorem 1.3] that among all convex bodies in
En of a given volume, ellipsoids are the only local minimizers of Φn−i with respect to the
Hausdorff metric.

In addition, Milman and Yehudayoff [187, Section 8.2] also find a short proof of the Petty
projection inequality, Theorem 9.2.9, that avoids use of the Busemann–Petty centroid inequal-
ity, Corollary 9.2.7; instead, their proof is analogous to the one presented for Theorem 9.2.11,
the Blaschke–Santaló inequality for centered convex bodies, which was found by Meyer and
Pajor [605book, Lemma 1]. In particular, they prove that for u ∈ Sn−1 and y ∈ u⊥, we have

λ1((Π∗K) ∩ (lu + y)) ≤ λ1((Π∗SuK) ∩ (lu + y)).

Interestingly, this can be expressed as Xu(Π
∗K) ≤ Xu(Π

∗SuK), where Xu denotes the X-ray
in the direction u, and similarly, (9.2) on p. 362 is equivalent to Xu⊥K

∗ ≤ Xu⊥S
∗
uK, where

Xu⊥ signifies the (n−1)-dimensional X-ray parallel to u⊥. Yet another formulation of the two
results would be Su(Π

∗K) ⊂ Su(Π
∗SuK) and Su⊥K

∗ ⊂ Su⊥S
∗
uK, where Su⊥ denotes Schwarz

symmetrization parallel to u⊥.
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Problem 9.4

Milman and Yehudayoff [187, Theorem 8.2] provide an affirmative answer when i = 1, thus
establishing for the first time a sharp Blaschke–Santaló inequality for compact sets. In [187,
Section 8.1], they comment on the possibility of similarly extending their results for convex
bodies to compact sets when 1 < i ≤ n− 1, but leave these cases open.

Problem 9.5

The conjectured inequality is also stated by Schneider [227, (9.56), p. 515]. As is pointed
out in Note 9.6, the special case i = 0 reduces to Problem 9.3. Apart from this, the problem
is still wide open.

Milman and Yehudayoff [187] introduce the Lp-moment affine quermassintegrals, defined
(in our notation) for K ∈ Kn0 , 0 ≤ i ≤ n− 1, and 0 > p ≥ −n, by

Φn−i,p(K) =
κn
κi

(∫
G(n,i)

λi(K|S)p dS

)1/p

,

when 1 ≤ i ≤ n − 1, and Φn,p(K) = κn. Thus Φn−i,−n(K) = Φn−i(K) is the usual affine
quermassintegral of K. (The case when p = 0 is also considered in [187, Section 7.2], where
it is shown to play a role in an averaged Loomis–Whitney inequality.) They conjecture that
for 0 ≤ i ≤ j ≤ n− 1 and 0 > p ≥ −n, we have

(40) κjnΦi,p(K)n−j ≤ κinΦj,p(K)n−i,

with equality for p > −n if and only if K is a ball. The case p = −n is Problem 9.5, where
equality is conjectured to hold if and only if K is an ellipsoid. In [187, Theorem 1.5], (40) is
proved when 0 > p ≥ i− n, the other cases remaining open.

It is interesting that with one exception, the situation is exactly mirrored in the dual
case. Gardner [89, (41), p. 379] introduced what might now be called dual Lp-moment affine
quermassintegrals, defined for bounded Borel sets C, 0 ≤ i ≤ n− 1, and 0 < p ≤ n, by

Φ̃n−i,p(C) =
κn
κi

(∫
G(n,i)

λi(C ∩ S)p dS

)1/p

,

when 1 ≤ i ≤ n − 1, and Φ̃n,p(K) = κn, and (without stating it as a conjecture) considered
the possibility that for 0 ≤ i ≤ j ≤ n− 1 and 0 < p ≤ n, we have

(41) κjnΦ̃i,p(C)n−j ≥ κinΦ̃j,p(C)n−i.

In [89, Theorem 7.4], (41) is proved, with precise equality conditions, when 0 < p ≤ n−i, which
are just the values corresponding to those in [187, Theorem 1.5]. The exception mentioned
above is that in [89, Theorem 7.7], (41) is actually proved to be false when 1 ≤ i ≤ n − 2,
j = n − 1, p = n, and C is a centered convex body that is not an ellipsoid. However, for
sections, unlike projections, the case j = n− 1 is different in an essential way; it corresponds
to the case i = 1 of [89, Theorem 7.4], where the equality condition indicates this difference.
It remains quite possible, then, that (41) is true when j ≤ n− 2.
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Problem 9.6

Dafnis and Paouris [67] (see the report for Problem 9.3) also asked if there is a universal
constant c2 > 0 such that

Φ[i](K) ≤ c2

√
n/i,

for 1 ≤ i ≤ n− 1, and showed that this inequality holds with an extra factor of log n on the
right-hand side. It has been verified for some classes of random polytopes by Chasapis and
Skarmogiannis [59].
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[175] J. Mart́ın-Goñi. A note on the reduction of the slicing problem to centrally symmetric bodies. J. Math.
Anal. App. 525 (2023), Paper No. 127135, 15 pp.

[176] V. Mastrantonis and Y. A. Rubinstein. The Nazarov proof of the non-symmetric Bourgain-Milman
inequality. Indiana Univ. Math. J. 73 (2024), 911–53.

[177] V. G. Maz’ya. Classes of domains and imbedding theorems for function spaces. Soviet Math. Dokl. 1
(1960), 882–85.

[178] D. McDuff and D. Salamon. Introduction to Symplectic Topology, third edition. Oxford University Press,
Oxford, 2017.

[179] C. T. McMullen. Minkowski’s conjecture, well-rounded lattices and topological dimension. J. Amer.
Math. Soc. 18 (2005), 711–34.

[180] M. W. Meckes. Volumes of symmetric random polytopes. Arch. Math. (Basel) 82 (2004), 85–96.
[181] M. W. Meckes. Magnitude and Holmes–Thompson intrinsic volumes of convex bodies. Canad. Math.

Bull. 66 (2023), 854–67.
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